
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
SAT Solvers & DPLL

Matt Fredrikson

Carnegie Mellon University
Lecture 16

March 18, 2025

1 Introduction

In this lecture we will continue our exploration of algorithmic techniques for proving
formulas automatically. Such algorithms are called decision procedures, because given
a formula in some logic they attempt to decide their validity after a finite amount of
computation.

Until now, we have gradually built up from proving properties about formulas in
propositional logic, to doing so for first-order dynamic logic. As we begin discussing
decision procedures, we will return to propositional logic so that the techniques applied
by these algorithms can be more clearly understood. Decision procedures for proposi-
tional logic are often referred to as SAT solvers, as they work by exploiting the relation-
ship between validity and satisfiability, and directly solve the latter problem. Later on,
we will see that these same techniques underpin decision procedures for richer logics,
and are able to automatically prove properties about programs.

2 Review: Propositional Logic and Unit Resolution

Recall that our grammar for propositions is:

Q,P ::= p | P ∧Q | P ∨Q | P → Q | ¬P | ⊤ | ⊥

A truth assignment M assigns either true or false to every propositional variable (or
atom, as we say). This is analogous to the state ω in dynamic logic that assigns an
integer to every variable. So, if you like, you can think of propositional theorem proving
as deciding the (quantifier-free) theory of Booleans. We write M |= P if the formula P

http://www.cs.cmu.edu/~15414

L16.2 SAT Solvers & DPLL

is true given the assignment M . This is defined exactly as we did in dynamic logic on
these connectives with one additional clause:

M |= p iff M(p) = true

A convenient way to present a truth assignment is by giving a list of p if M(p) = true
and ¬p if M(p) = false. In principle, this list would have to be infinite, but since every
formula contains only finitely many atoms we can use such a finite representation.

(p ∧ q → r) ∧ (p → q) → (p → r) (1)

We use some additional terminology to refer to formulas that evaluate to ⊤ under some
or all possible interpretations.

Definition 1 (Validity and Satisfiability). A formula F is called valid iff it is true in all
interpretations, i.e. I |= F for all interpretations I . Because any interpretation makes
valid formulas true, we also write ⊨ F iff formula F is valid. A formula F is called
satisfiable iff there is an interpretation ω in which it is true, i.e. I |= F . Otherwise it is
called unsatisfiable.

Satisfiability and validity are duals of each other. That is, a formula F is valid if and
only if ¬F is unsatisfiable.

F is valid ↔ ¬F is unsatisfiable (2)

Importantly, this means that we can decide whether a formula is valid by reasoning
about the satisfiability of its negation. A proof of validity for F from the unsatisfiability
of ¬F is called a refutation. Most efficient decision procedures use this approach, and
therefore attempt to directly prove the satisfiability of a given formula. These tools are
called SAT solvers, referring to the propositional SAT problem. If a SAT solver finds no
satisfying interpretation for F , then we can conclude that ¬F is valid.

In Lecture 14 we discussed resolution, an important inference rule for propositional
logic that was central to early SAT solvers and the development of refutation-based deci-
sion procedures. We highlighted a particular case of resolution known as unit resolution,
summarized by the following rule:

p ∨ C ¬p
C

Today we will return to this rule, and see how it is used today in modern SAT solvers.

3 A Simple Procedure

Conceptually, SAT is not a difficult problem to solve. Each atom in the formula corre-
sponds to a binary choice, and there are a finite number of them to deal with. Recall
from the second lecture how we used truth tables to determine the validity of a formula:

15-414 LECTURE NOTES MATT FREDRIKSON

SAT Solvers & DPLL L16.3

1. Enumerate all possible interpretations of the atoms in F .

2. Continue evaluating all subformulas until the formula is a Boolean constant.

3. F is valid iff it is true under all interpretations.

We can modify this procedure to decide satisfiability in the natural way.

1. Enumerate all possible assignments of the atoms in F .

2. Continue evaluating all subformulas until the formula is a Boolean constant.

3. F is satisfiable iff it is true under at least one interpretation.

Implementing this procedure is fairly straightforward. The only part that might be
tricky is enumerating the valuations, making sure that i) we don’t miss any, and ii) we
don’t enumerate any of them more than necessary, potentially leading to nontermina-
tion.

One natural way to do this is to use recursion, letting the stack implicitly keep track
of which valuations have already been tried. We will rely on two helper functions to do
this, which are outlined informally below.

• choose atom: formula -> atom. This function takes a formula argument and
returns an arbitrary atom appearing in it.

• subst: formula -> atom -> bool -> formula. Takes a formula, and atom
appearing in the formula, and a Boolean value, and returns a new formula with
all instances of the atom replaced by the Boolean value. It also simplifies it as
much as possible, attempting to reduce the formula to a constant.

The function sat is given below. At each recursive step, the function begins by com-
paring the formula to the constants true and false, as a final decision can be made
immediately in either case. Otherwise, it proceeds by selecting an arbitrary atom p

from F, and creating two new formulas Ft and Ff by substituting true and false, re-
spectively, and simplifying them as much as possible so that if there are no unassigned
atoms in the formula then they are reduced to the appropriate constant. sat then makes
two recursive calls on Ft and Ff, and if either return true then sat does as well.

1 let rec sat (F:formula) : bool =

2 if F = true then true

3 else if F = false then false

4 else begin

5 let p = choose_atom(F) in

6 let Ft = (subst F p true) in

7 let Ff = (subst F p false) in

8 sat Ft || sat Ff

9 end

Intuitively, we can think of this approach as exhaustive case splitting. The procedure
chooses an atom p, splits it into cases p and ¬p, and recursively applies itself to the

15-414 LECTURE NOTES MATT FREDRIKSON

L16.4 SAT Solvers & DPLL

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

Conjunctive Normal Form and Unit Resolution. We have been assuming that for-
mulas are given in clausal form, which is a disjunction of conjunctions of literals. Con-
sider the following CNF formula:

(p1 ∨ ¬p3 ∨ ¬p5)︸ ︷︷ ︸
C1

∧ (¬p1 ∨ p2)︸ ︷︷ ︸
C2

∧ (¬p1 ∨ ¬p3 ∨ p4)︸ ︷︷ ︸
C3

∧ (¬p1 ∨ ¬p2 ∨ p3)︸ ︷︷ ︸
C5

∧ (¬p4 ∨ ¬p2)︸ ︷︷ ︸
C6

(3)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 ∨ ¬p3 ∨ ¬p5) ∧ (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔ (⊤ ∨ ¬p3 ∨ ¬p5) ∧ (⊥ ∨ p2) ∧ (⊥ ∨ ¬p3 ∨ p4) ∧ (⊥ ∨ ¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔⊤∧ p2 ∧ (¬p3 ∨ p4) ∧ (¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔ p2 ∧ (¬p3 ∨ p4) ∧ (¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)

Notice the clause C2, which was originally ¬p1 ∨ p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

⊤ ∧ (¬p3 ∨ p4) ∧ (¬⊤ ∨ p3) ∧ (¬p4 ∨ ¬⊤)

↔ (¬p3 ∨ p4) ∧ (⊥ ∨ p3) ∧ (¬p4 ∨ ⊥)

↔ (¬p3 ∨ p4) ∧ p3 ∧ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬⊤ ∨ p4) ∧ ⊤ ∧ ¬p4
↔ (⊥ ∨ p4) ∧ ¬p4
↔ p4 ∧ ¬p4

Now all clauses are unit, and it is clear that the formula is not satisfiable. Notice that
once we assigned p1 true , we were able to determine that the resulting formula was

15-414 LECTURE NOTES MATT FREDRIKSON

SAT Solvers & DPLL L16.5

unsatisfiable without making any further decisions. All of the resulting simplifications
were a logical consequence of this original choice. The process of carrying this to its
conclusion is called Boolean constraint propagation (BCP), or sometimes unit propagation
for short.

4 DPLL

Using an implementation that resembles the one above for large problems would not
yield good results in practice. One immediate problem is that the formula is copied
multiple times and mutated in-place with each recursive call. While this makes it easy
to keep track of which variables have already been assigned or implied via propagation,
even through backtracking, it is extremely slow and cumbersome.

To address this, we will make use of a partial interpretation, which only assigns values
to some of the variables in the formula. Rather than copying modified formulas around,
we can directly mutate the partial interpretation. Because it remains partial throughout
most of the execution, parts of the formula cannot be evaluated fully to a constant, but
are instead unresolved.

Definition 2 (Status of a clause under partial interpretation). Given a partial interpre-
tation I , a clause is:

• Satisfied, if one or more of its literals is satisfied

• Conflicting, if all of its literals are assigned but not satisfied

• Unit, if it is not satisfied and all but one of its literals are assigned

• Unresolved, otherwise

For example, given the partial interpretation I = {p1,¬p2, p4}:

(p1 ∨ p3 ∨ ¬p4) is satisfied

(¬p1 ∨ p2) is conflicting

(p2 ∨ ¬p4 ∨ p3) is unit

(¬p1 ∨ p3 ∨ p5) is unresolved

Another missed opportunity is that the previous algorithm does not take advantage
of BCP, which in the example above allowed us to conclude that the remaining formula,
which origionally had five variables, was unsatisfiable with just one recursive call in-
stead of the 25 that would have been necessary in our original naive implementation.
This is a big improvement! Let’s add it to our decision procedure and have a look at
the consequences.

at the beginning of the procedure, before F is further inspected and any choices are
made. This will ensure that if we are given a formula that is already reducible to a

15-414 LECTURE NOTES MATT FREDRIKSON

L16.6 SAT Solvers & DPLL

constant through BCP, then we won’t do any unnecessary work by deciding values that
don’t matter. The resulting procedure is called the David-Putnam-Loveland-Logemann
or DPLL procedure, as it was introduced by Martin Davis, Hilary Putnam, George Lo-
gemann, and Donald Loveland in the 1960s.

To see how DPLL might be implemented, we’ll assume two new helper functions.

• set and propagate. This function takes a literal, a partial interpretation, and a
CNF formula. It sets the corresponding literal in the partial valuation, and then
uses BCP to propagate the consequences of this assignment until no further unit
clauses can be found. It returns a list of literals that were assigned during this
process, and a boolean indicating whether a conflict was detected.

• backtrack. This function takes a list of literals and a partial interpretation, and
undoes the assignments made by the literals in the list.

Combining these elements, partial interpretations and BCP, we can write the DPLL
procedure as seen below. The core of the procedure is the choose function, which is
responsible for making decisions and backtracking. The set and propagate function
is used to handle the consequences of these decisions, and the eval cnf function is
used to determine if the formula is satisfied under the current partial interpretation
when there are no remaining unassigned literals. A few important details are worth
noting:

1. If a satisfying assignment is found, then an exception is raised to terminate early,
returning control to the outer dpll function.

2. If set and propagate detects a conflict, then the backtrack function is called to
undo the assignments that led to the conflict. Subsequently, choose either tries the
other assignment for the same variable, or terminates to the context from which it
was called. At the topmost level, this will cause the first choose call to terminate
without an exception, which means that conflicts were detected for every possible
assignment of the variables, and the formula is unsatisfiable.

15-414 LECTURE NOTES MATT FREDRIKSON

SAT Solvers & DPLL L16.7

1 let dpll (cnf : cnf) : option valuation =

2 let pval = Array.make cnf.nvars None in

3 let rec choose (remaining: list int) =

4 match remaining with

5 | Nil -> if eval_cnf pval cnf then raise Sat_found

6 | Cons v vs ->

7 match pval[v] with

8 | None ->

9 let conflict_detected , diff =

10 set_and_propagate {var=v; sign=false} pval cnf in

11 if not conflict_detected then choose vs ;

12 backtrack diff pval ;

13

14 let conflict_detected , diff =

15 set_and_propagate {var=v; sign=true} pval cnf in

16 if not conflict_detected then choose vs ;

17 backtrack diff pval ;

18 | Some _ -> choose vs

19 end

20 end in

21

22 let remaining = range 0 cnf.nvars in

23 try choose remaining ; None

24 with Sat_found -> Some (extract_sat_valuation pval cnf) end

Remarkably, although DPLL was introduced over 50 years ago, it still forms the basis
of most modern SAT solvers. Much has changed since the 1960’s, however, and the
scale of SAT problems that are used in practice has increased dramatically. It is not
uncommon to encounter instances with millions of atomic propositions and hundreds
of thousands of clauses, and in practice it is often feasible to solve such instances.

As we discussed earlier, when a clause C is unit under partial interpretation I , I must
be extended so that C’s unassigned literal ℓ is satisfied. There is no need to backtrack
on ℓ before the assignments in I that made C unit have already changed, because ℓ’s
value was implied by those assignments. Rather, backtracking can safely proceed to
the most recent decision, erasing any assignments that arose from unit propagation in
the meantime. Implementing this backtracking optimization correctly is essential to an
efficient SAT solver, as it is what allows DPLL to avoid explicitly enumerating large
portions of the search space in practice.

Learning conflict clauses. Consider the following CNF:

(¬p1 ∨ p2)︸ ︷︷ ︸
C1

∧ (¬p3 ∨ p4)︸ ︷︷ ︸
C2

∧ (¬p6 ∨ ¬p5 ∨ ¬p2)︸ ︷︷ ︸
C3

∧ (¬p5 ∨ p6)︸ ︷︷ ︸
C4

∧ (p5 ∨ p7)︸ ︷︷ ︸
C5

∧ (¬p1 ∨ p5 ∨ ¬p7)︸ ︷︷ ︸
C6

And suppose we make the following decisions and propagations.

1. Decide p1

2. Propagate p2 from clause C1

15-414 LECTURE NOTES MATT FREDRIKSON

L16.8 SAT Solvers & DPLL

3. Decide p3

4. Propagate p4 from clause C2

5. Decide p5

6. Propagate p6 from clause C4

7. Conflicted clause C3

At this point C3 is conflicted. We should take a moment to reflect on our choices, and
how they influenced this unfortunate outcome. We know that some subset of the deci-
sions contributed to a partial assignment that cannot be extended in a way that leads to
satisfiability, but which ones?

Tracing backwards, the implication p6 was chronologically the most direct culprit, as
it was incidental to the conflict in C3. This was a consequence of our decision to set
p5, so we could conclude that this to blame and proceed backtracking to this point and
change the decision. However, C3 would not have been conflicting, even with p5 and
p6, if not for p2. Looking back at the trace, p2 was a consequence of our decision to set
p1.

Thus, we learn from this outcome that ¬p1 ∨ ¬p5 is logically entailed by our original
CNF. The process that we used to arrive at this clause uses the resolution rule that we
covered in Lecture 14. We can use this to quickly derive a proof that the clauses in our
formula imply ¬p1 ∨ ¬p5. In the following, let F be our original formula.

¬p1 ∨ p2 C1

¬p3 ∨ p4 C2

¬p6 ∨ ¬p5 ∨ ¬p2 C3

¬p5 ∨ p6 C4

p5 ∨ p7 C5

¬p1 ∨ p5 ∨ ¬p7 C6

¬p5 ∨ ¬p2 C7 = C3 ▷◁p C4

¬p1 ∨ ¬p5 C8 = C1 ▷◁r C7

Clauses derived in this way are called conflict clauses, and they are useful in pruning
the search space. In the current example, suppose that we added the conflict clause
¬p1 ∨ ¬p5 to our set. Then any partial interpretation with p1 makes this clause unit,
implying the assignment ¬p5.

5. Backtrack to p5

6. Learn clause C7 ↔ ¬p1 ∨ ¬p5

7. Propagate ¬p5 from clause C7

8. ...

15-414 LECTURE NOTES MATT FREDRIKSON

SAT Solvers & DPLL L16.9

Without this, if we eventually backtrack past p5 to change the assignment to p3, then
when the procedure revisits p5 it will attempt both assignments p5 and ¬p5, encounter-
ing the same conflict again.

To summarize, the procedure for finding a conflict clause under partial assignment I
is as follows.

1. Let C be a conflicting clause under I

2. While C contains implied literals, do:

3. Let ℓ be the most recent implied literal in C

4. Let C ′ be the clause that implied ℓ by unit propagation

5. Update C by applying resolution to C and C ′ on ℓ

This procedure terminates when all of the literals in C correspond to decisions made
by dpll. However, the conflict clause produced in this way is by no means the only
sound or useful such clause that can be derived. The most efficient way to find others
is to construct an implication graph.

Definition 3 (Implication graph). An implication graph for partial assignment I is a
directed acyclic graph with vertices V and edges E, where:

• Each literal ℓi in I corresponds to a vertex vi ∈ V .

• Each edge (vi, vj) ∈ E corresponds to an implication brought about by unit prop-
agation. That is, if ℓj appears in I because of a unit propagation, and ℓi ap-
pears in the corresponding unit clause that brought about this propgation, then
(vi, vj) ∈ E.

• V contains a special conflict vertex Λ, which only has incoming edges {(ℓ,Λ)|ℓ ∈
C} for each literal appearing in a conflicting clause C.

The implication graph is a data structure maintained by many efficient implementa-
tions of DPLL. As assignments are added to a partial interpretation, the graph is up-
dated with new nodes and edges to keep track of the relationship between decisions
and their implied consequences. Likewise, nodes and edges are removed to account
for backtracking.

The implication graph for our running example is shown below.

p1@1 p2@1

p3@2 p4@2

p5@3

p6@3

Λ

C1

C2

C4

C3

C3

C3

15-414 LECTURE NOTES MATT FREDRIKSON

L16.10 SAT Solvers & DPLL

The three decisions we made correspond to roots of the graph, and implications are
internal nodes. We also keep track of at which decision level each vertex appeared, with
the @ notation. Recall that we began (decision level 1) by deciding p1, which implied p2
by unit propagation. The responsible clause, in this case C1, labels the edge that reflects
this implication.

Visually, the implication graph makes the relevant facts quite obvious. First, notice
the subgraph containing vertices p3@2 and p4@2. The decision to assign p3 ended up
being irrelevant to the eventual conflict in C3, and this is reflected in the fact that the
subgraph is disconnected from the conflict node. When analyzing a conflict, we can
simply ignore subgraphs disconnected from the conflict node.

Focusing only on the subgraph connected to the conflict node, the correspondence
between the roots and the conflict clause we obtained via resolution, ¬p1∨¬p5, is imme-
diate. This is not an accident, and in fact is the entire reason for building an implication
graph in the first place. We can use this data structure to generalize on the resolution-
based procedure outlined above by identifying separating cuts in the implication graph.

Definition 4 (Separating cut). A separating cut in an implication graph is a minimal set
of edges whose removal breaks all paths from the roots to the conflict nodes.

The separating cut partitions the implication graph into two sides, which we can
think of as the “reason” side and the “conflict” side. Importantly, any set of vertices on
the “reason” side with at least one edge to a vertex on the “conflict” side corresponds to
a sufficient condition for the conflict. We obtain a conflict clause by negating the literals
that correspond to these vertices. In the example from earlier, we chose the following
edges highlighted in red for our conflict clause.

p1@1 p2@1

p5@3

p6@3

Λ

C1

C4

C3

C3

C3

However, we could have just as well chosen the following, which would have led to
the clause ¬p5 ∨ ¬p2.

p1@1 p2@1

p5@3

p6@3

Λ

C1

C4

C3

C3

C3

15-414 LECTURE NOTES MATT FREDRIKSON

SAT Solvers & DPLL L16.11

Any conflict clause corresponding to such a cut is derivable using the resolution rule,
and is safe to add to the clause set. Different procedures have various ways of select-
ing cuts. Some choose to compute several cuts, aggressively adding multiple conflict
clauses to further constrain the search. Most modern solvers aim to find a single effec-
tive cut that corresponds to an asserting clause, which forces an implication immedately
after backtracking. Because SAT is a hard problem, these are heuristic choices that may
or may not improve performance on different classes of instances. For any sound start-
egy, such choices are best validated empirically to identify those that yield the best
results on important problems that arise in practice.

5 Worked example.

To get a better sense of how DPLL with clause learning works, we will illustrate its full
application to an example formula, given by the set of CNF clauses below.

p ∨ q C1

¬p ∨ q C2

¬r ∨ ¬q C3

r ∨ ¬q C4

The following trace of DPLL with clause learning demonstrates the unsatisfiability of
these clauses.

1. Decide p

2. Propagate q from C2

3. Propagate ¬r from C3

4. Conflict on C4

5. Backtrack to p

6. Learn ¬p by resolving C4 with C3 (yielding ¬q), and then with C2

7. Propagate q from C1

8. Propagate ¬r from C3

9. Conflict on C4

10. Return unsat

Notice that the procedure ended after encountering the second conflict on C4. After
adding the learned clause ¬p to the formula and applying BCP, this conflict arose with-
out having made any more decisions. In other words, the original clauses entailed the

15-414 LECTURE NOTES MATT FREDRIKSON

L16.12 SAT Solvers & DPLL

unit clause ¬p via resolution, and when the resulting formula is simplified by applying
unit propagation, C4 is simplified to ⊥. This means that the formula must be unsatisfi-
able, so the procedure can stop and return that result.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Review: Propositional Logic and Unit Resolution
	A Simple Procedure
	DPLL
	Worked example.

