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1 Introduction

In the last lecture, we learned algorithms to solve propositional formulas and that SAT
solvers are able to solve very large formulas with millions of variables and clauses.
However, in order to use existing SAT solvers, we must first encode the problem we
want to solve into CNF. In this lecture, we will learn how to encode problems into the
language accepted by SAT solvers, i.e. formulas in Conjunctive Normal Form (CNF).

Learning Goals.

After this lecture, you should learn that:

• Formulas can be converted in linear time to CNF using the Tseitin encoding.

• There are multiple ways to encode values from finite domains as propositional
constraints, with tradeoffs that depend on the size of the encoded domain.

• Consistency and arc-consistency are desirable properties for propositional encod-
ings when using SAT solvers that employ Boolean Constraint Propagation.

2 Tseitin Encoding

Given a propositional formula, one can use De Morgan’s laws and distributive law to
convert it to CNF. However, in some cases, converting a formula to CNF can have an
exponential explosion on the size of the formula.
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Suppose we have the following formula φ,

φ = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ . . . ∨ (xn ∧ yn)

and want to convert φ to CNF. If we apply De Morgan’s laws and distribute law then
we will obtain a formula φ′ such that:

φ′ = (x1 ∨ x2 ∨ . . . ∨ xn) ∧ (y1 ∨ x2 ∨ . . . ∨ xn) ∧ (y1 ∨ y2 ∨ . . . ∨ yn)

.
Note that φ′ has an exponential number of clauses, namely 2n clauses. Can we avoid

this exponential blowup on the size of the formula? Yes, with the Tseitin encoding we
can transform any propositional formula into an equisatisfiable CNF formula.

Definition 1 (Equisatisfiable). Two formulas φ and ϕ are equisatisfiable if φ is satisfiable
iff ϕ is satisfiable.

Note that equisatisfiability is weaker than equivalence but useful if all we want to do
is to determine the satisfiability of a formula.

The key idea behind the Tseitin Encoding is to introduce fresh variables to encode
subformulas and to encode the meaning of these fresh variables with clauses. This
procedure avoids duplicating whole subformulas and can transform a propositional
formula into CNF with a linear increase in the size of the formula.

Example 2. Consider the formula ϕ = (x∧¬y)∨(z∨(x∧¬w)). This formula can be viewed
as a tree as depicted in Figure 1. The terminal nodes denote the atoms of the formula
and the intermediate nodes denote fresh variables that encode each subformula.

Figure 1: Tree representation of a propositional formula

For each fresh variable f, a, b, c, we introduce clauses that represent their equivalence
with the respective subformula. In particular, we add the following clauses:

• f ↔ (a ∨ b) ≡ (¬f ∨ a ∨ b) ∧ (¬a ∨ f) ∧ (¬b ∨ f)

• a ↔ (x ∧ ¬y) ≡ (¬a ∨ x) ∧ (¬a ∨ ¬y) ∧ (¬x ∨ y ∨ a)
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• b ↔ (z ∨ c) ≡ (¬b ∨ z ∨ c) ∧ (¬z ∨ b) ∧ (¬c ∨ b)

• c ↔ (x ∧ ¬w) ≡ (¬a ∨ x) ∧ (¬a ∨ ¬w) ∧ (¬x ∨ w ∨ a)

Since we want the formula to hold, we additionally need to add the unit clause (f).
Note that by adding this unit clause, unit propagation (see the following section) would
simplify the first three clauses to (a ∨ b).

Let’s take a closer look at the previous formula φ = (x1∧y1)∨(x2∧y2)∨. . .∨(xn∧yn).
Recall that this formula would require an exponential number of clauses if we would
use De Morgan’s laws and distribute law. If instead, we use the Tseitin Encoding we
can have an equisatisfiable formula φ′′ in CNF composed by the following clauses:

• w1 ↔ (x1 ∧ y1) ≡ (¬w1 ∨ x1) ∧ (¬w1 ∨ y1) ∧ (w1 ∨ ¬x1 ∨ ¬y1)

• . . .

• wn ↔ (xn ∧ yn) ≡ (¬wn ∨ xn) ∧ (¬wn ∨ yn) ∧ (wn ∨ ¬xn ∨ ¬yn)

• (w1 ∨ w2 ∨ . . . ∨ wn)

This would result in a formula φ′′ with 3n+1 clauses and with n auxiliary variables.

3 Unit Propagation

Consider the following CNF formula:

(p1 ∨ ¬p3 ∨ ¬p5)︸ ︷︷ ︸
C1

∧ (¬p1 ∨ p2)︸ ︷︷ ︸
C2

∧ (¬p1 ∨ ¬p3 ∨ p4)︸ ︷︷ ︸
C3

∧ (¬p1 ∨ ¬p2 ∨ p3)︸ ︷︷ ︸
C5

∧ (¬p4 ∨ ¬p2)︸ ︷︷ ︸
C6

(1)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 ∨ ¬p3 ∨ ¬p5) ∧ (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔ (⊤ ∨ ¬p3 ∨ ¬p5) ∧ (⊥ ∨ p2) ∧ (⊥ ∨ ¬p3 ∨ p4) ∧ (⊥ ∨ ¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔⊤∧ p2 ∧ (¬p3 ∨ p4) ∧ (¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔ p2 ∧ (¬p3 ∨ p4) ∧ (¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)

Notice the clause C2, which was originally ¬p1 ∨ p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

⊤ ∧ (¬p3 ∨ p4) ∧ (¬⊤ ∨ p3) ∧ (¬p4 ∨ ¬⊤)

↔ (¬p3 ∨ p4) ∧ (⊥ ∨ p3) ∧ (¬p4 ∨ ⊥)

↔ (¬p3 ∨ p4) ∧ p3 ∧ ¬p4
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After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬⊤ ∨ p4) ∧ ⊤ ∧ ¬p4
↔ (⊥ ∨ p4) ∧ ¬p4
↔ p4 ∧ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine
that the resulting formula was unsatisfiable without making any further decisions. All
of the resulting simplifications were a logical consequence of this original choice. The
process of carrying this to its conclusion is called Boolean constraint propagation (BCP),
or sometimes unit propagation for short.

4 Finite Domains

Many real-world problems require the encoding of finite domains to propositional
logic. In this section, we will present two different ways of encoding integer domains
in propositional logic by using unary and binary representations of these finite domains.
The intuition behind these representations is that an unary representation considers a
Boolean variable for each possible value, while a binary representation considers the
binary representation of an integer.

Example 3. Suppose we want to encode the domain of an integer variable X = {1, 2, 3}.

Unary representation

Consider the auxiliary variables x1, x2, x3. We want to encode the meaning that xi is
true iff X = i. To encode this property we need to encode that:

1. At least one of these variables must occur:
(x1 ∨ x2 ∨ x3)

2. At most one of these variables must occur:
(¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3)

Binary representation

Consider the binary representation of integers and the auxiliary variables b1, b0. We
want to encode the following property:

• If X = 1 then b0 = 0 ∧ b1 = 0

• If X = 2 then b0 = 0 ∧ b1 = 1

• If X = 3 then b0 = 1 ∧ b1 = 0
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In this case, the meaning of each variable can be used to implicitly encode the possible
values of X . The only information we need to encode is possible integer values that
are not part of the domain of X . In this case, X = 4 is not part of the domain but can
be encoded using these two variables, therefore we need to disallow this value from
occurring by adding the clause (¬b0 ∨ ¬b1).

4.1 Properties of representations

The main advantage of the binary representation is that only requires a logarithmic
number of auxiliary variables to encode the finite domain. In contrast, we need a linear
number of auxiliary variables for the unary encoding, so it may seem like the lesser
choice in most cases. However, when encoding problems using a binary encoding, it
can be cumbersome to express constraints that relate to different numbers since each
number is represented by a conjunction of variables instead of a single variable. More-
over, unit propagation is able to infer more information when using a unary encoding
than when using binary encoding.

These considerations are illustrated by two general properties. The first, called con-
sistency, says that whenever an assignment to the propositional variables of the encod-
ing is not compatible with any solution to the domain, unit propagation should result
in immediate conflict. For example, in a binary encoding if the bits encode a number
that is not in the domain then a conflict is detected.

Definition 4 (Consistent Encoding). An encoding is consistent if, when given a partial
propositional assignment that is not compatible with any solution to the domain, unit
propagation leads to a conflict.

Example 5 (Consistency in Binary Encoding with a Relational Constraint). Consider two
variables, X and Y , each with domain {1, 2, 3} encoded using the binary representation.
For X , we use auxiliary variables b1 and b0, where the valid assignments correspond to:

X b1 b0
1 0 0
2 1 0
3 0 1

with the clause
(¬b1 ∨ ¬b0)

ruling out the invalid assignment (b1, b0) = (1, 1) (which would encode X = 4). Simi-
larly, for Y , let the binary variables be c1 and c0 with an analogous encoding and disal-
low clause (¬c1 ∨ ¬c0).

Now, suppose we wish to enforce the relational constraint X < Y . One way to
encode this is to allow only the valid pairs

(X,Y ) ∈ {(1, 2), (1, 3), (2, 3)},

and to add clauses that rule out any assignment that violates this ordering.
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Assume that the constraint has been encoded in CNF appropriately. Now consider
the partial assignment that sets X = 3 by assigning ¬b1 and b0, while leaving Y unas-
signed. Under the constraint X < Y , any valid assignment for Y must satisfy Y > 3.
However, since the domain of Y is only {1, 2, 3}, no valid assignment exists. Unit prop-
agation, using both the disallow clause for Y and the clauses enforcing X < Y , will
immediately derive a conflict. This demonstrates that the binary encoding (in combi-
nation with the relational constraint) is consistent: a partial assignment that cannot be
extended to a full solution leads to an immediate conflict.

The second useful property is known as arc-consistency, which expands on consis-
tency by requiring that a partial assignment will result in unit propagation that dis-
cards inconsistent assignments to the remaining encoding variables. For example, with
a unary encoding, if one variable is assigned true then the remaining should be implied
false by unit propagation.

Definition 6 (Arc-Consistent Encoding). An encoding is arc-consistent if it is consistent,
and additionally unit propagation on a partial assignment discards inconsistent values
for the encoding variables.

Example 7 (Arc-Consistency in Unary Encoding). Consider the variable X with do-
main {1, 2, 3} and the unary encoding using variables x1, x2, and x3, together with
the clauses:

1. (x1 ∨ x2 ∨ x3),

2. (¬x1 ∨ ¬x2), (¬x1 ∨ ¬x3), and (¬x2 ∨ ¬x3).

If a partial assignment sets x2 to true, then the binary clauses (¬x1∨¬x2) and (¬x2∨¬x3)
immediately force x1 and x3 to be false via unit propagation. In this way, all inconsis-
tent assignments for the remaining variables are pruned immediately, illustrating arc-
consistency.

While both of the encodings discussed in this section are arc-consistent, this property
is especially useful for the unary encoding: while it requires more variables to encode,
whenever any of the variables is decided true, arc-consistency means that the remaining
encoding variables need not be decided, and do not expand the search space for the
solver.

In practice, the size of the domain is usually the decider between choosing one or
other encoding. For small domains, unary encoding is usually preferred while for large
domains the binary encoding is usually the best choice.

5 Encoding Graph Coloring as a SAT problem

Suppose that we want to encode the graph coloring problem to SAT, i.e. we want to ask
the question, given a graph if there exists a k-coloring such that no two nodes that are
connected have the same color.
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SAT Encodings L13.5

• If xi is set to true then Si is also set to true:
(¬x1 _ S1) ^ (¬x2 _ S2)

• If Si is set to true then xi+1 is set to false since the sum is already 1:
(¬S1 _ ¬x2) ^ (¬S2 _ ¬x3)

In general, this encoding will require 3n � 4 clauses which are much fewer clauses
than the naive encoding which requires a quadratic number of clauses. Note that this
reduction is achieved at the cost of n � 1 auxiliary variables. This reasoning can be
further generalized to at-most-k constraints and many CNF encodings exist for these
kinds of constraints. For the generalization of the sequential encoding to at-most-k
constraints, we refer the interested student to the literature [Sin05].

5 Encoding Graph Coloring as a SAT problem

Suppose that we want to encode the graph coloring problem to SAT, i.e. we want to ask
the question, given a graph if there exists a k-coloring such that no two nodes that are
connected have the same color.
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Figure 2: 3-coloring of a graph.

When encoding a problem to SAT, we start by defining the meaning of the variables
that we will use in our formula. In this case, we can use an unary encoding and consider
3 variables per color for each node. Let’s denote Ay, Ab, Ar Boolean variables that are
true if A is colored yellow (y), blue (b), or red (r), respectively. Similarly, we can define
variables By, Bb, Br, Cy, Cb, Cr, Dy, Db, Dr, Ey, Eb, Er, for the remaining nodes. Given
these variables, we can now encode the problem by adding the following clauses:

• If two nodes are connected then they do not have the same color:
(¬Ay _ ¬Ey) ^ (¬Ab _ ¬Eb) ^ (¬Ar _ ¬Er)
(¬Ay _ ¬Cy) ^ (¬Ab _ ¬Cb) ^ (¬Ar _ ¬Cr)
(¬Cy _ ¬By) ^ (¬Cb _ ¬Bb) ^ (¬Cr _ ¬Br)
(¬Cy _ ¬Dy) ^ (¬Cb _ ¬Db) ^ (¬Cr _ ¬Dr)
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Figure 2: 3-coloring of a graph.

When encoding a problem to SAT, we start by defining the meaning of the variables
that we will use in our formula. In this case, we can use an unary encoding and consider
3 variables per color for each node. Let’s denote Ay, Ab, Ar Boolean variables that are
true if A is colored yellow (y), blue (b), or red (r), respectively. Similarly, we can define
variables By, Bb, Br, Cy, Cb, Cr, Dy, Db, Dr, Ey, Eb, Er, for the remaining nodes. Given
these variables, we can now encode the problem by adding the following clauses:

• If two nodes are connected then they do not have the same color:
(¬Ay ∨ ¬Ey) ∧ (¬Ab ∨ ¬Eb) ∧ (¬Ar ∨ ¬Er)
(¬Ay ∨ ¬Cy) ∧ (¬Ab ∨ ¬Cb) ∧ (¬Ar ∨ ¬Cr)
(¬Cy ∨ ¬By) ∧ (¬Cb ∨ ¬Bb) ∧ (¬Cr ∨ ¬Br)
(¬Cy ∨ ¬Dy) ∧ (¬Cb ∨ ¬Db) ∧ (¬Cr ∨ ¬Dr)
(¬By ∨ ¬Ey) ∧ (¬Bb ∨ ¬Eb) ∧ (¬Br ∨ ¬Er)
(¬Dy ∨ ¬Ey) ∧ (¬Db ∨ ¬Eb) ∧ (¬Dr ∨ ¬Er)

• Each node has at-least-one color:
(Ay ∨Ab ∨Ar)
(By ∨Bb ∨Br)
(Cy ∨ Cb ∨ Cr)
(Dy ∨Db ∨Dr)
(Ey ∨ Eb ∨ Er)

• Each node has at-most-one color:
(¬Ay ∨ ¬Ab) ∧ (¬Ay ∨ ¬Ar) ∧ (¬Ar ∨ ¬Ab)
(¬By ∨ ¬Bb) ∧ (¬By ∨ ¬Br) ∧ (¬Br ∨ ¬Bb)
(¬Cy ∨ ¬Cb) ∧ (¬Cy ∨ ¬Cr) ∧ (¬Cr ∨ ¬Cb)
(¬Dy ∨ ¬Db) ∧ (¬Dy ∨ ¬Dr) ∧ (¬Dr ∨ ¬Db)
(¬Ey ∨ ¬Eb) ∧ (¬Ey ∨ ¬Er) ∧ (¬Er ∨ ¬Eb)

A SAT solver can solve this formula and return the interpretation I = {Ay, Br, Cb,
Dy, Eb} (for simplicity omit the variables assigned to false from the interpretation). If
we decode this interpretation to the original problem, we obtain the coloring presented
in Figure 2.
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6 Summary

• Using the Tseitin encoding we can convert any propositional formula into an
equisatisfiable CNF formula with a linear increase in the size of formula.

• Integer numbers can represented in unary or binary.

• Problems such as graph coloring can be easily encoded to CNF.
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