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1 Introduction

In our quest for a formal (and hence implementable) theory of imperative programs,
we specified programs and formulas in dynamic logic. We have also provided a col-
lection of axioms that allow us break down the structure of complex programs into
simpler ones, until we have a formula in arithmetic using the usual logical connectives
such as equality and inequality, conjunction, disjunction, implication, and quantifica-
tion. We have also formalized how to calculate weakest preconditions and strongest
postconditions for a program, both of which are purely logical formulas without any
reference to programs. What we have not yet specified is how we reason about such
logical formulas—in our implementation we just mapped them map to corresponding
formulas in Why3.

In this lecture we begin to close this gap and introduce the sequent calculus as a means
to formalize logical reasoning. We do not yet talk about arithmetic, which will be the
subject of another lecture. We think of the sequent calculus as a human-oriented calculus
of proofs rather than a machine-oriented calculus which we will introduce in the next part
of the course.

The sequent calculus was devised by Gentzen [Gen35] as a way to prove the consis-
tency of first-order logic and, ultimately, the consistency of arithmetic. Consistency here
means that within a formal system of axioms and rules of inference we cannot derive
a contradiction. Since then, the sequent calculus has found many related applications
in logic, automated deduction, and programming languages. The course 15-317 Con-
structive Logic looks much more deeply into the sequent calculus and its applications in
computer science.

http://www.cs.cmu.edu/~15414


L13.2 Sequent Calculus

In this lecture we focus somewhat narrowly on the sequent calculus as used in pro-
gram verification.

Learning goals. After this lecture, you should be able to:

• Reproduce the inference rules of the sequent calculus for the usual logical con-
nectives and quantifiers

• Use sequent calculus to prove simple logical entailments

• Employ the mathematical semantics of sequents to verify or refute the correctness
of rules.

2 What is a Sequent?

Given formulas Pi and Q, a sequent has the form

P1, . . . , Pn ⊢ Q

where P1, . . . , Pn are the antecedents and Q is the succedent of the sequent. Logically, the
Pi are assumptions and Q is the goal we are trying to prove. We usually abbreviate a
sequent as Γ ⊢ Q where Γ stands for an (unordered) collection of antecedents.

Whenever you interact with Why3 in the IDE and examine the “Task” (a name for the
verification condition for a part of the program), it is presented in the form of a sequent.

As an example, consider the theory of arrays, using the terminology state for arrays,
var for the domain, and int for the codomain, as introduced for our formalization of
dynamic logic. We would like to prove a simple property, namely that for two consec-
utive writes to the same index, the second one overwrites the first.

The “local context” here contains the antecedents of the sequent and the part marked
“goal” is the succedent. So a sequent is a convenient way to visualize and communicate
the state of proof search.

3 Inference Rules

We now develop inference rules for breaking down goals into simpler ones, which is
analogous the “splitting” a goal in Why3. For example, to break down a conjunction
we have to prove both conjuncts.

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P ∧Q
∧R

This is called the right rule for conjunction ∧R since it breaks down the right-hand side
of the sequent.

The usual reading of such rule would be from the premises to the conclusion: if P and Q
are true, so is P ∧Q. We read these from the conclusion to the premises: in order to prove
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Sequent Calculus L13.3

1 module ArrayTheory

2

3 type state (* abstract *)

4 type var (* abstract *)

5

6 (* ******************************* *)

7 (* "array" operations and axioms *)

8 (* ******************************* *)

9 function read (omega : state) (x : var) : int

10 function write (omega : state) (x : var) (v : int) : state

11

12 axiom read_eq : forall x y omega v.

13 x = y -> read (write omega x v) y = v

14 axiom read_ne : forall x y omega v.

15 x <> y -> read (write omega x v) y = read omega y

16

17 (* extensionality *)

18 axiom ext : forall omega nu.

19 (forall x. read omega x = read nu x) -> omega = nu

20

21 goal ex1 : forall omega x v1 v2.

22 read (write (write omega x v1) x v2) x = v2

23

24 end

In the Why3 IDE, if we highlight ex1 and examine the Task, we see:

1 --------------------------- Local Context ---------------------------

2 type state

3

4 type var

5

6 function read state var : int

7

8 function write state var int : state

9

10 axiom read_eq :

11 forall x:var, y:var, omega:state, v:int.

12 x = y -> read (write omega x v) y = v

13

14 axiom read_ne :

15 forall x:var, y:var, omega:state, v:int.

16 not x = y -> read (write omega x v) y = read omega y

17

18 axiom ext :

19 forall omega:state, nu:state.

20 (forall x:var. read omega x = read nu x) -> omega = nu

21

22 ------------------------------- Goal --------------------------------

23

24 goal ex1 :

25 forall omega:state, x:var, v1:int, v2:int.

26 read (write (write omega x v1) x v2) x = v2
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L13.4 Sequent Calculus

P ∧Q it is sufficient to prove both P and Q. We prefer this latter reading. For example, we
make all antecedents in Γ available in both premises even if only a subset of them may
ultimately be needed.

There is a corresponding left rule to break down an antecedent P ∧Q:

Γ, P,Q ⊢ R

Γ, P ∧Q ⊢ R
∧L

This expresses that we can break down an assumption P ∧Q into separate assumptions
P and Q.

The way we organize the sequent calculus is that for each logical operator we develop
rules to break it down on the right and on the left of the turnstile ⊢. Let’s consider
implication P → Q as another example. In the right rule, we just assume P and proceed
with the proof of Q.

Γ, P ⊢ Q

Γ ⊢ P → Q
→R

Next, how do we use an assumption P → Q? We use it to justify the assumption Q if we
also have a proof of P . That is:

Γ ⊢ P Γ, Q ⊢ R

Γ, P → Q ⊢ R
→L

This last rule is a little bit tricky, so it is fair to ask: how do we know the rules are
correct? Before we can answer that we need to ask: what does it mean for a rule to be
correct?

Ultimately, we should like to establish something like that formulas P are valid, that
is, true for all possible assignment of values to variables. We write this as |= P . Because
we want to prove validity we start with

· ⊢ P

and hope that a proof of P in the sequent calculus lets us conclude the validity of P .
That suggests the following definition:

A sequent P1, . . . , Pn ⊢ Q is valid if the formula P1 ∧ . . . ∧ Pn → Q is valid.

The next step this to define:

An inference rule is sound if the conclusion is valid if all premises are.

In the bottom-up direction this means that if we can prove all the premises of a rule,
then the original conclusion we were trying to deduce must be valid.

Let’s check the soundness of the two rules for implication. For that, we recall the
meaning of implication:

ω |= P → Q iff whenever ω |= P then ω |= Q

We write
∧
Γ for the conjunction of all antecedents Γ. For the implication right rule we

have to prove
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Sequent Calculus L13.5

If
∧
Γ ∧ P → Q is valid then

∧
Γ→ (P → Q) is valid.

So we assume that for any arbitrary ω,

ω |=
∧

Γ ∧ P → Q

We have to show that from this assumption,

ω |=
∧

Γ→ (P → Q)

So, we assume ω |=
∧
Γ and ω |= P and have to show ω |= Q. Go from the fact that

ω |=
∧
Γ ∧ P . This allows us to conclude ω |= Q, which is what we needed in this case.

To prove the left rule
Γ ⊢ P Γ, Q ⊢ R

Γ, P → Q ⊢ R
→L

we assume for an arbitrary ω that ω |=
∧
Γ → P and ω |=

∧
Γ ∧ Q → R. We have to

show
ω |=

∧
Γ ∧ (P → Q)→ R

We break this down, assuming ω |= P → Q, with the goal of proving ω |= R. Instanti-
ating the first assumption we conclude ω |= P , and from that ω |= Q. Using the second
assumption (from the second premise) we can use that to conclude ω |= R, which is
what we had to show.

We can also talk about the completeness of a set of inference rules. Here it would mean
that if |= P then · ⊢ P . This is true for Gentzen’s sequent calculus, assuming that the
quantifiers range over a domain about which we make no assumptions except that it is
nonempty. If we quantify over integers the situation is more complicated.

4 The Difference Between Implication and Entailment

So, what is the difference between P ⊢ Q and P → Q? One answer is that the first
one is expresses the validity of P → Q while the latter expresses the truth of P → Q.
In particular, we can embed P → Q inside other formulas, such as as (P → Q) → R,
which we cannot with entailment. A statement such as (P ⊢ Q) ⊢ R is not permitted in
the sequent calculus and would require the □ modality to express as a single formula.

Equally important is the pragmatic difference between the two. In proving a sequent
P ⊢ Q we break down the structure of P and Q and apply rules (in the bottom-up
direction) to make progress towards a proof. The discipline here is to apply the right
and left rules only once a formula has percolated to the top of the sequent. There are
other calculi of so-called deep inference that allow applying rules to be applied anywhere
inside a formula, but such a calculus has a fundamentally different nature from the
sequent calculus.

A similar explanation applies to the difference, say, between P ∧ Q and P,Q among
the antecedents.
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L13.6 Sequent Calculus

5 Multiple Conclusions

In Why3, or even while carrying out “ordinary mathematical reasoning”, we usually
have multiple antecedents (assumptions) but just one succedent (goal). In order to
write our rules for disjunctions it is convenient to be able to “hedge our bet” and not
(yet) commit to which disjunct is true. That is, instead of

Γ ⊢ A

Γ ⊢ A ∨B
∨R1

Γ ⊢ B

Γ ⊢ A ∨B
∨R2

we write
Γ ⊢ A,B

Γ ⊢ A ∨B
∨R

If, for example, A is again a disjunction we’d like to be able to apply this rule again.
This means the succedent should allow multiple formulas interpreted disjunctively.

P1, . . . , Pn ⊢ Q1, . . . , Qk

which we abbreviate as
Γ ⊢ ∆

and is valid if
∧
Γ→

∨
∆.

For disjunction we then get the following two rules

Γ ⊢ P,Q,∆

Γ ⊢ P ∨Q,∆
∨R

Γ, P ⊢ ∆ Γ, Q ⊢ ∆

Γ, P ∨Q ⊢ ∆
∨L

We can recognize ∨L as a rule of cases: if we know P or Q we can distinguish both
cases to prove ∆.

Before we move on, we should revisit the previous rules and generalize the succe-
dents.

Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P ∧Q,∆
∧R

Γ, P,Q ⊢ ∆

Γ, P ∧Q ⊢ ∆
∧L

Γ, P ⊢ Q,∆

Γ ⊢ P → Q,∆
→R

Γ ⊢ P,∆ Γ, Q ⊢ ∆

Γ, P → Q ⊢ ∆
→L

One thing you might notice is that, so far, we don’t have any means to complete a proof
in this format! A key rule for this is the so-called identity rule which completes a proof
when an antecedent matches a succedent.

Γ, P ⊢ P,∆
id

Unlike the right and left rules for the connectives, this rule is independent of the for-
mula P .
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Sequent Calculus L13.7

There is a counterpart of identity called cut that allows us to introduce a lemma P ;
we just need to make sure we can prove it before assuming it.

Γ ⊢ P,∆ Γ, P ⊢ ∆

Γ ⊢ ∆
cut

While cut can be wonderfully helpful in proving things by hand, it is an obstacle if we
consider the task of systematically (perhaps automatically) constructing a proof bottom
up. It would require us the devise a (true) lemma P which can help us prove ∆, which
presents essentially an infinite range of possibilities.

Gentzen’s main theorem (his Hauptsatz) is that the rule of cut is redundant in the
sense that if there is a proof with the cut rule then there is always another one (poten-
tially much larger) that doesn’t use cut. Because all other rules just decompose formu-
las or close off proofs, this property implies that the sequent calculus is consistent and
cannot prove a contradiction.

6 Intuitionistic vs. Classical Reasoning

The rules we have presented so far model so-called classical reasoning, which is appro-
priate here due to the particular mathematical semantics we have given to formulas
and sequents. There is also constructive reasoning which imposes a stronger burden of
proof. For example, a proof of P → Q should provide an effective way to construct a
proof of Q given a proof of P . Similarly, a proof of P ∨ Q should provide a method to
decide whether P or Q is true. This different view of what is typically the same logical
language is the subject of 15-317 Constructive Logic. In constructive logic every proof,
by its very nature, represents a program that can be executed. In this course we take
programs to be separately defined and reasoned about in dynamic logic.

An example to illustrate the difference is P ∨(P → Q). Classically, this is valid: if P is
true the left disjunct holds, and if P is false then the right disjunct holds. Constructively,
it is not valid, because we cannot decide (without more knowledge about P and Q)
which of the two disjuncts is true. The classical proof in the sequent calculus would be

P ⊢ P,Q
id

· ⊢ P, P → Q
→R

· ⊢ P ∨ (P → Q)
∨R

An intuitionist might object to this proof in two respects. First, one could say that
you cannot hedge your bets but should decide between the two disjuncts at the ∨R
rule. This was Gentzen’s way of making the distinction, insisting the there be a single
succedent in the intuitionistic sequent calculus. If one insists on accepting a postponed
choice, but we would need to contend with a deeper flaw in the →R rule. That’s be-
cause the formula P → Q says the proof of Q may use the assumption P , but actually
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L13.8 Sequent Calculus

we then use P not to prove Q but the other disjunct (which may be considered “out of
scope”).

7 Quantification

To prove ∀x. P (x) we have to prove P (a) for an arbitrary a. In the proof rule we just
have to make sure there are no spurious assumptions about a, that is, it doesn’t yet
occur in the sequent. Otherwise, we could prove formulas like P (a)→ ∀x. P (x) which
is certainly false if our domain of quantification has more than one element.

Γ ⊢ P (a),∆ (a not in Γ, P (x), or ∆)

Γ ⊢ ∀x. P (x),∆
∀R

Because similar side conditions are common, they are sometimes omitted, just annotat-
ing the justification itself with a, indicating it must be “fresh”.

Γ ⊢ P (a),∆

Γ ⊢ ∀x. P (x),∆
∀Ra

The left rule instantiates the quantifier with an arbitrary expression e. This instantiation
must be a so-called capture-avoiding substitution or uniform substitution, making sure no
variable confusion arises from the instantiation. We write P (e) for the capture-avoiding
substitution of e for x in P (x).

Γ, P (e) ⊢ ∆

Γ, ∀x. P (x) ⊢ ∆
∀L

The issue that arises here is that we may need the quantifier more than once. Here is a
simple example:

∀x. x = f(x) ⊢ a = f(f(a))

We need to instantiate x with a and then also with f(a) to complete this proof. There
are two standard ways of handling this: we can leave a copy of the quantified formula
itself among the antecedents whenever we instantiate it. Another is to add an explicit
rule

Γ, P, P ⊢ ∆

Γ, P ⊢ ∆
contractionL

For proof search, we actually think of this rule as duplication, but read in the traditional
direction it is contraction. If we add this rule we have to carefully control its use during
proof search because we could easily create too many copies of P , flooding our search
space. Similarly, we also have to control the instantiation of universally quantified
antecedent which is an interesting and complex topic in the design of theorem provers.
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Sequent Calculus L13.9

Existential quantification is dual, with the role of the left- and right-hand sides re-
verse from universal quantification.

Γ ⊢ P (e),∆

Γ ⊢ ∃x. P (x),∆
∃R

Γ, P (a) ⊢ ∆

Γ, ∃x. P (x) ⊢ ∆
∃La

The side condition that a be fresh applies here in the ∃L rule. It turns out we also need
a rule of contraction for the right-hand side.

Γ ⊢ P, P,∆

Γ ⊢ P,∆
contractionR

8 Summary

We have provided a set of rules for the usual connectives and quantifiers as all as the □
modality. We can also turn the axioms that break down the programs in dynamic logic
into inference rules without problems. We have not yet discussed anything specific to
the integers—everything was independent of the domain of quantification. We will fol-
low up with rules regarding integers in the next lecture. We add the rules for negation
¬P .

Γ, P ⊢ P,∆
id

Γ ⊢ P,∆ Γ, P ⊢ ∆

Γ ⊢ ∆
cut

Γ, P ⊢ ∆

Γ ⊢ ¬P,∆
¬R

Γ ⊢ P,∆

Γ,¬P ⊢ ∆
¬L

Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P ∧Q,∆
∧R

Γ, P,Q ⊢ ∆

Γ, P ∧Q ⊢ ∆
∧L

Γ ⊢ P,Q,∆

Γ ⊢ P ∨Q,∆
∨R

Γ, P ⊢ ∆ Γ, Q ⊢ ∆

Γ, P ∨Q ⊢ ∆
∨L

Γ, P ⊢ Q,∆

Γ ⊢ P → Q,∆
→R

Γ ⊢ P,∆ Γ, Q ⊢ ∆

Γ, P → Q ⊢ ∆
→L

Γ ⊢ P, P,∆

Γ ⊢ P,∆
contractionR

Γ, P, P ⊢ ∆

Γ, P ⊢ ∆
contractionL

Γ ⊢ P (a),∆

Γ ⊢ ∀x. P (x),∆
∀Ra

Γ, P (e) ⊢ ∆

Γ, ∀x. P (x) ⊢ ∆
∀L

Γ ⊢ P (e),∆

Γ ⊢ ∃x. P (x),∆
∃R

Γ, P (a) ⊢ ∆

Γ, ∃x. P (x) ⊢ ∆
∃La
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L13.10 Sequent Calculus

9 Intuitionistic vs. Classical Reasoning Revisited

As a mathematical example of the difference between intuitionistic and classical rea-
soning, let’s consider the following proposition:

There exist irrational numbers a and b such that ab is rational.

Here is a classical proof of this proposition.

Consider
√
2
√
2
. There are two cases:

√
2
√
2

is rational.
Then a = b =

√
2 satisfy our proposition.

√
2
√
2

is irrational. Then a =
√
2
√
2

and b =
√
2 satisfy our proposition

because ab = (
√
2
√
2
)
√
2 =
√
2
2
= 2 is rational

Even though we have mathematically proven our proposition, we have avoided to give
definitive irrational a and b that make ab true. In other words, we have hedged our bets.

In intuitionistic logic, we would not accept the proof above as given because it does
not exhibit witnesses for the existentials. However, it does carry significant information!
From an intuitionists point of view, the above proof shows:

If
√
2
√
2 is either rational or irrational, then there exist irrational a and b such that

ab is rational.

This expresses if we can determine the status of
√
2
√
2

then we can construct witnesses
a and b, and the proof shows how to do that.

This example is not an isolated instance. An intuitionist can understand any classical
proof as an intuitionistic one but of a different theorem, assuming some instances of the
law of excluded middle. So intuitionistic logic is more expressive because we can enforce
constructive existence with ⊢ P ∨ Q (we must be able to prove either ⊢ P or ⊢ Q) and
⊢ ∃x. P (x) (there must be a witness e such that ⊢ P (e)) which classical logic can not.

In the proof above, once formalized in the sequent calculus, we would apply contrac-
tion on the right-hand side to obtain two copies of the existential. However, because it
involves arithmetic we cannot fully formalize it in our pure sequent calculus. Here is
another, purely logical example illustrating the difference.

· ⊢ ∃x.∀y. P (x)→ P (y)

Is this even true? We reason as follows: either P (z) is always true, in which case it
doesn’t matter which x we pick. Or P (z) is false for some z = a. Then we use this a
to instantiate x and the implication is true because P (a) is false. Constructively, this
reasoning fails because we don’t actually construct a witness for the existential, we just
say that either there is one or there isn’t.
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Sequent Calculus L13.11

In the sequent calculus the classical proof with contractionR is the following:

P (a), P (e) ⊢ P (a), P (b)
id

P (a) ⊢ P (e)→ P (a), P (b)
→R

· ⊢ P (e)→ P (a), P (a)→ P (b)
→R

· ⊢ P (e)→ P (a),∀y. P (a)→ P (y)
∀Rb

· ⊢ P (e)→ P (a),∃x.∀y. P (x)→ P (y)
∃R

· ⊢ ∀y. P (e)→ P (y),∃x.∀y. P (x)→ P (y)
∀Ra

· ⊢ ∃x.∀y. P (x)→ P (y), ∃x. ∀y. P (x)→ P (y)
∃R

· ⊢ ∃x.∀y. P (x)→ P (y)
contractionR

In this proof, the choice of e is irrelevant.

10 Some Aspects of Proof Search

When we use the sequent calculus for proof search then the rule of contraction (really:
duplication when considered upwards) is impractical. Instead, we can analyze when
we might need an assumption again, and when we can drop it. For example, in the rule

Γ, P,Q ⊢ ∆

Γ, P ∧Q ⊢ ∆
∧L

there is not need to “keep” P ∧ Q among the antecedents since P and Q separately
are strong enough to imply P ∧ Q. On the other hand, as already demonstrated we
may need an assumption ∀x. P (x) more than once. Such considerations lead to the
following version of the sequent calculus without explicit rules for contraction.1 We put
the rule of cut in [brackets] because by Gentzen’s cut elimination theorem it is in fact
unnecessary. Even if it can shorten proofs considerably, during actually proof search it
is often difficult to see what the formula P should be because it may be directly related

1This is slightly different from the rules presented in lecture.
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L13.12 Sequent Calculus

to the formulas in the conclusion.

Γ, P ⊢ P,∆
id

[
Γ ⊢ P,∆ Γ, P ⊢ ∆

Γ ⊢ ∆
cut

]
Γ, P ⊢ ∆

Γ ⊢ ¬P,∆
¬R

Γ ⊢ P,∆

Γ,¬P ⊢ ∆
¬L

Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P ∧Q,∆
∧R

Γ, P,Q ⊢ ∆

Γ, P ∧Q ⊢ ∆
∧L

Γ ⊢ P,Q,∆

Γ ⊢ P ∨Q,∆
∨R

Γ, P ⊢ ∆ Γ, Q ⊢ ∆

Γ, P ∨Q ⊢ ∆
∨L

Γ, P ⊢ Q,∆

Γ ⊢ P → Q,∆
→R

Γ ⊢ P,∆ Γ, Q ⊢ ∆

Γ, P → Q ⊢ ∆
→L

Γ ⊢ P (a),∆

Γ ⊢ ∀x. P (x),∆
∀Ra

Γ, ∀x. P (x), P (e) ⊢ ∆

Γ, ∀x. P (x) ⊢ ∆
∀L

Γ ⊢ P (e),∃x. P (x),∆

Γ ⊢ ∃x. P (x),∆
∃R

Γ, P (a) ⊢ ∆

Γ, ∃x. P (x) ⊢ ∆
∃La

In lecture we also discussed the so-called invertibility of rules in the version without
cut: which rules can be applied “blindly” and which rules may require backtracking. In
the classical formulation above with multiple conclusion, in fact all rules are invertible,
that is, all premises are valid if and only if the conclusion is valid.

The rules that would give us pause are first and foremost those that break a proof
goal into two subgoals, which are ∧R, ∨L, and→L. For example, the ∨L rule splits a
proof into considering two cases. But it is possible that in fact the proof doesn’t require
this case split, in which case we have simply duplicated our work. If we have multiple
disjunctions, we might in fact do an exponential amount of unnecessary work.

The other rules to treat with caution are ∀L and ∃R because they (necessarily) pre-
serve the principal formula of the rule so they could be applied infinitely often, for
different terms e.

In practice, human-oriented prover interfaces tend to avoid multiple conclusions be-
cause they are not very intuitive. In those case other rules are generally available so
every valid sequent can still be proved. For example, we could “reduce” Γ ⊢ A ∨ B
to Γ,¬A,¬B ⊢ ⊥, proceeding indirectly. We put “reduction” in quotes because even
though we eliminate the disjunction, we introduce two negations, so the nature of the
rules changes somewhat.
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Sequent Calculus L13.13

11 Validity of Formulas2

An important aspect of reasoning about programs was the modal operator □P , express-
ing that P is valid. We needed this, for example, when reasoning with loop invariants.

[α∗]Q← J ∧□(J → [α]J) ∧□(J → Q)

Recall the semantics:
ω |= □P iff ν |= P for every ν

The first approximation of our right rule would say that we have to forget all our as-
sumptions, because they may not be true in every ν, while the left rule just deduces the
truth of P from its validity.

· ⊢ P

Γ ⊢ □P,∆
□R

Γ, P ⊢ ∆

Γ,□P ⊢ ∆
□L

It is easy to convince oneself that these rules are sound: if the premises are valid, so
are the conclusions. However, they are incomplete in a strange way. For example, we
cannot prove □(P → Q)→ □P → □Q. Let’s pause after two→R rules

□(P → Q),□P ⊢ □Q

If we try to use □R we get stuck immediately because we are left to prove Q without
assumptions. But even if we strip the boxes on the left with the □L rules, the situation
does not change fundamentally. We need to generalize our right rule □R so that all an-
tecedents of the form □− survive. That’s justified because such formulas are assumed
to be valid. We write

□Ψ ⊢ P

□Ψ,Γ ⊢ □P,∆
□R

where □Ψ means that every formula in Ψ is of the form □−.
While these rules are now better, there are still some shortcomings which can ad-

dressed by explicitly distinguishing antecedents that are valid from those that are merely
true (see [PD01]).

Assuming there are no assumptions about validity for formulas, we can now turn
our axiom for reasoning with invariants,

[α∗]Q← J ∧□(J → [α]J) ∧□(J → Q)

into an inference rule
Γ ⊢ J,∆ J ⊢ [α]J J ⊢ Q

Γ ⊢ [α∗]Q,∆
inv

Note how we have dropped Γ and ∆ in the second and third premise to reflect the
validity requirements for these entailments.

2This material was not covered in lecture.
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L13.14 Sequent Calculus

Other axioms decomposing programs in dynamic logic are bi-implications and can
therefore easily be turned into inference rules. For example:

Γ ⊢ [α][β]P,∆

Γ ⊢ [α ; β]P,∆
[;]R

Γ, [α][β]P ⊢ ∆

Γ, [α ; β]P ⊢ ∆
[;]L

We won’t bother with the remaining rules.
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