
Mini-Project 2
Decision Procedures

15-414: Bug Catching: Automated Program Verification

Due Tuesday, April 8, 2025 (checkpoint)
Friday, April 18, 2025 (final)

150 pts

You should pick one of the following two alternative mini-projects. You are encouraged to
do the mini-project with a partner.

WhyML implementations of the data structures below that have been verified in Why3
may exist online. While you can examine Why3 reference materials, tutorials, and
examples, you may not read or use Why3 implementations of the data structures we
ask you to code. However, you may study or use implementations in other languages
(with appropriate citations), and you can freely use anything in the Why3 standard
library. The Toccata gallery of verified Why3 program may provide some insight.

The mini-projects have two due dates:

• Checkpoint on Tue Apr 8 2025

• Final projects on Fri Apr 18 2025
Up to 50% of the points you lost on the checkpoint may be recovered on your final submis-
sion if you fix the problems that were noted. You are strongly encouraged to look at our
feedback even if you received a full score.

The mini-projects must be submitted electronically on Gradescope. Please carefully read the
policies on collaboration and credit on the course web site.

If you are working with a partner, only one of the two of you should submit to each Grade-
scope assignment. Once you have uploaded a submission, you should select the option to add
group members on the bottom of the screen, and add your partner to your submission. Your part-
ner should then make sure that they, too, can see the submission.

A note on verification and grading. The verification component of this project is more challenging
than previous assignments. Whether your solution fully verifies is just one component of our
grading, and we will consider the student’s effort in verifying their code. If you have spent time
to strengthening your specifications, testing your code to ensure it is correct, and trying different
approaches to specifying and proving correctness, but still were not able to verify everything, you
will receive a significant portion of the available points for verification.

MINI-PROJECT 2 150 PTS

http://toccata.lri.fr/gallery/why3.en.html


Decision Procedures MP2.2

The Code

In each problem, we provide some suggested module outlines, but your submitted modules may
be different. For example, where we say ‘let’ it may actually be ‘let rec’, or ‘function’, or
‘predicate’, etc. You may also modify the order of the functions or provide auxiliary types and
functions. You may also change the type definitions or types of functions except for externally
visible ones we use for testing purposes. They are marked in the starter code as DO NOT CHANGE.

The Writeup

The writeup should consist of the following sections:

1. Executive Summary. Which problem did you solve? Did you manage to write and verify all
functions? If not, where did the code or verification fall short? Which were the key decisions
you had to make? What ended up being the most difficult and the easiest parts? What did
you find were the best provers for your problem? What did you learn from the effort?

2. Code Walk. Explain the relevant or nontrivial parts of the specification or code. Point out
issues or alternatives, taken or abandoned. Quoting some code is helpful, but avoid “core
dumps.” Basically, put yourself into the shoes of a professor or TA wanting to understand
your submission (and, incidentally, grade it). Importantly, if parts of your code did not
verify and you spent time trying to fix it, explain what you tried, why you think it may not
have worked, and why you believe that your solution is correct.

3. Recommendations. What would you change in the assignment if we were going to reuse it
again next year?

Depending on how much code is quoted, we expect the writeup to consist of about 3-4 pages in
the lecture notes style.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file mp2.zip to MP2 Checkpoint (Code) for the checkpoint and to MP2 Final
(Code) for the final handin. Make sure you submit both the code and completed session
folder in the zip. Feel free to adjust our past Makefiles for your purposes, but you are not
required to create one.

• Submit a PDF containing your final writeup to MP2 Final (Written). There is no checkpoint
for the written portion of the mini-project. You may use the file mp2-final.tex as a template
and submit mp2-final.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the writeup to be typeset in LaTeX, but as long as you hand in a readable PDF with
your solutions it is not a requirement. We package the assignment source mp2.tex and a solution
template mp2-final.tex in the handout to get you started on this.

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.3

1 SAT Solver

A SAT solver uses a decision procedure to establish the satisfiability of a propositional formula.
The goal of this project is to implement a SAT solver based on DPLL and unit propagation that
takes a formula in conjunctive normal form as an input and decides whether or not it is satisfiable
by enumerating every possible valuation of its variables.

A reminder on DPLL and unit propagation. We define a partial valuation as a partial function
from variable identifiers to booleans. A variable that is not mapped to a value is said to be unas-
signed. Besides, a literal xi or ¬xi is said to be unassigned if and only if xi is unassigned. Given a
partial valuation, a clause is said to be

• satisfied if one or more of its literals are satisfied

• conflicting if all its literals are assigned but not satisfied

• unit if it is not satisfied and all but one of its literals are assigned

• unresolved otherwise.

The DPLL algorithm enhances a naive backtracking search algorithm by implementing an opti-
mization called unit propagation: if a clause becomes unit during the search process, it can only be
satisfied by making its unique unassigned literal true and so no branching is necessary. In prac-
tice, this rule often applies in cascade, which can reduce the search space greatly. An example run
of the DPLL algorithm is shown Figure 1.

F =

C0︷ ︸︸ ︷
(x2 ∨ x3) ∧

C1︷ ︸︸ ︷
(¬x1 ∨ ¬x3) ∧

C2︷ ︸︸ ︷
(¬x1 ∨ ¬x2 ∨ x3) ∧

C3︷ ︸︸ ︷
(x0 ∨ x1 ∨ ¬x3) ∧

C4︷ ︸︸ ︷
(¬x0 ∨ x1 ∨ x3)

Step Partial valuation
Start with an empty partial valuation. {}
Decide x0. {x0 7→ true}

Decide x1. {x0 7→ true, x1 7→ true}
Propagate ¬x3 from unit clause C1. {x0 7→ true, x1 7→ true, x3 7→ false}
Propagate x2 from C0. {x0 7→ true, x1 7→ true, x3 7→ false, x2 7→ true}
Clause C2 is conflicting. Backtracking. {x0 7→ true}

Decide ¬x1. {x0 7→ true, x1 7→ false}
Propagate x3 from C4. {x0 7→ true, x1 7→ false, x3 7→ true}
Every clause is satisfied: F is satisfiable. {x0 7→ true, x1 7→ false, x3 7→ true, x2 7→ ∗}

Figure 1: Unit propagation in action

More details about the DPLL algorithm and unit propagation are available in Lecture 16 notes.

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.4

1.1 Building blocks of DPLL (Checkpoint: 70 pts)

In Assignment 5, you specified and implemented some simple operations that can be performed
over formulas in CNF. In that assignment you considered complete valuations, however, in prac-
tice a SAT solver uses partial valuations. In this project, we will start by considering the same
types as before. You may reuse any code from Assignment 5. All code that you write for the
checkpoint should be in the module Sat.

1 type var = int

2 type lit = { var : var ; sign : bool }

3 type clause = list lit

4 type cnf = { clauses : array clause ; nvars : int }

5 type valuation = array bool

To make it easier for this assignment, we provide in the code template the data structure invari-
ants for the type cnf as well as basic predicates (valid valuation, clause sat with, sat with,
and unsat). We recommend using these predicates for your specifications.

Partial valuations. A variable in a partial valuation can take values True or False if it is assigned
a value, or None if is unassigned. A complete valuations relates a with partial valuation as follows.
A partial valuation is said to be compatible with a valuation ρ if both agree on every variable which
is assigned by p. In particular, an empty partial valuation is compatible with any valuation.

1 type pval = array (option bool)

2

3 predicate compatible (pval : pval) (rho : valuation) =

4 forall i:int, b:bool. 0 <= i < length pval ->

5 pval[i] = Some b -> rho[i] = b

Task 1 (10 pts). A partial valuation that satisfies a CNF formula can be extended to a complete
valuation by assigning the unassigned variables to any truth value. Implement, specify and verify
a function extract_sat_valuation that given a partial valuation pval that satisfies the formula
cnf returns a complete valuation that also satisfies the formula cnf.

1 let extract_sat_valuation (pval : pval) (ghost cnf : cnf) : valuation

Task 2 (15 pts). Implement, specify and verify a function partial_eval_clause that takes a partial
valuation p along with a clause C as its arguments and returns:

• [Satisfied] if and only if p satisfies C

• [Conflicting] if and only if p and C are conflicting

• [Unit l] if c is a unit clause with unassigned literal l (for partial valuation p)

• [Unresolved] in every other case.

This corresponds to the following type and function definition:
1 type clause_status =

2 | Satisfied

3 | Conflicting

4 | Unit lit

5 | Unresolved

6

7 let rec partial_eval_clause (p : pval) (c : clause) : clause_status

MINI-PROJECT 2 150 PTS

https://www.cs.cmu.edu/~15414/assignments/asst5.pdf


Decision Procedures MP2.5

Note that your specification only needs to prove implications and not equivalences. For in-
stance, you only need to prove that if the result is something then that implies something else. For
instance:

1 ensures { result = Satisfied -> ... }

To make writing the specification easier for the Unresolved case, you can write a weaker spec-
ification that does not need to be as precise as the definition. In particular, you can just ensure that
when you return Unresolved the clause contains an unassigned literal. Note that this simplifica-
tion could lead to an implementation that would mark a clause as Unresolved when it is already
Satisfied. However, this would not be problematic for the correctness of sat since eventually
the clause would be marked as Satisfied. This happens in practice since SAT solvers do not keep
track of the status of a clause and only track if a clause is conflicting (requires backtracking) or unit
(requires propagation).

Task 3 (15 pts). Implement, specify and verify a function partial_eval_cnf that takes a partial
valuation p along with a CNF formula cnf as its arguments and returns:

• [Sat] if and only if p satisfies every clause of cnf . In this case, cnf is true for every valuation
that is compatible with p and the search can stop.

• [Conflict] if p is conflicting with at least one clause of cnf . In this case, cnf is false for every
valuation that is compatible with p and backtracking is needed.

• [Unit clause l] only if cnf admits a unit clause whose unassigned literal is l. If cnf ad-
mits more than one unit clause, which one is featured in the argument of Unit clause is
unspecified.

• [Other] in every other case.

Your partial eval cnf function should raise an exception Conflict found when a conflict is
found. You do not need to find all conflicts and can return an exception in the first conflict you
find. Likewise, it should raise Unit found when a unit clause is found. You do not need to find
all unit clauses and can return an exception in the first unit clause you find (even though there
may be conflicting clauses in the formula). This corresponds to the following type and function
definition:

1 exception Conflict_found

2 exception Unit_found lit

3

4 type cnf_status =

5 | Sat

6 | Conflict

7 | Unit_clause lit

8 | Other

9

10 let partial_eval_cnf (p : pval) (cnf : cnf) : cnf_status

Similarly to Task 2, your specification only needs to prove implications and not equivalences.

Task 4 (10 pts). Implement, specify and verify a backtrack function. Recall that in the DPLL
algorithm, when a conflict arises during search, one has to backtrack before the last decision point.
A naive way to do so would be to create a full copy of the current partial valuation every time a
choice is made but this would be terribly inefficient. A better alternative is to maintain a list of

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.6

every variable that has been assigned since the last decision point and to use this list as a reference
for backtracking.

Let p and p′ two partial valuations and l a list of variables. We say that l is a delta from p to p′

if p and p′ agree outside of l and the variables of l are unassigned in p. This can be formalized as
follows:

1 predicate delta (diff : list var) (pval pval’ : pval) =

2 (length pval = length pval’) /\

3 (forall v:var. mem v diff -> 0<=v< length pval /\ not (assigned pval v)) /\

4 (forall v:var. 0<=v< length pval -> not (mem v diff) -> pval[v] = pval’[v])

Then, we can define a function backtrack that restores an older version of a partial valuation
given a delta from this older version to the current one:

1 let rec backtrack (diff : list var) (pval : pval) (ghost old_pval : pval)

Note that old_pval is a ghost argument, which means that it will be eliminated during compila-
tion. Therefore, it cannot be used in the body of backtrack but only in its specification. However,
as opposed to diff and pval, it can be instantiated with ghost code.
Task 5 (20 pts). Implement a function set_and_propagate with the the following signature:

1 let rec set_and_propagate (l : lit) (pval : pval) (cnf : cnf) :

2 (bool, list var)

This function takes as its arguments an unassigned literal l and the current partial valuation
p. It updates p by setting literal l to true and then recursively performing unit propagation until a
conflict is reached or no unit clause remains.

• It raises a Sat_found exception in case the CNF becomes satisfied.

• It returns a tuple whose first component is a boolean that is true if and only if a conflict was
reached and whose second component is the delta of p (the list of every variable that was
assigned during the call to set_and_propagate).

To go back to the example of Figure 1, calling set and propagate for literal x1 and with pval =
{x0 7→ true} updates pval to {x0 7→ true, x1 7→ true, x3 7→ false, x2 7→ true} and returns the
tuple (true, [2, 3, 1]).

For the checkpoint, you do not need to write contracts for set_and_propagate, or verify it. For
the final solution, you will need to write an appropriate specification and prove it when you im-
plement the SAT solver. However, you should start thinking about what the specification should
look like. In particular, you should think about how to specify the relationship between the re-
turned delta and the partial valuation that is passed as an argument. If you want to provide a
conjectured specification as comments, we may be able to provide feedback on it that could help
you in the final submission.

1.2 SAT solver with unit propagation (Final Submission, 60 pts)

Now your task is to use the building blocks developed for the checkpoint to produce a working
implementation of DPLL. This will allow your solver to be more efficient since it can backtrack
earlier because it may find conflicts earlier when propagating unit literals. Continue working in
the module Sat. Before continuing, you should review the notes for Lecture 16 to remind yourself
how these pieces can fit together in a working implementation of DPLL.

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.7

Task 6 (60 pts). Implement, specify, and verify a function sat that uses partial valuations and
calls set_and_propagate and backtrack, putting all the previous pieces together to prove the
satisfiability of a propositional formula. In particular, this function should satisfy the following
contract.

1 let sat (cnf : cnf) : option valuation =

2 ensures { forall rho:valuation. result = Some rho -> sat_with rho cnf }

3 ensures { result = None -> unsat cnf }

Note that you are not required to prove termination. If you do not, you can annotate the above
function, and any of its dependencies, with diverges.

Rubric. The 60 points available for this task will be broken down as follows:

• 20 pts for the implementation of sat and any auxiliary functions apart from those from the
checkpoint (set_and_propagate, backtrack).

• 20 pts for the specification of auxiliary functions needed by sat (including set_and_propagate,
backtrack, and any others you devise).

• 20 pts for the verification of sat and any auxiliary functions needed by sat (including
set_and_propagate, backtrack, and any others you devise).

Hints: Since this project is harder to fully verify, we provide here some hints that may be helpful
for you.

When writing your specification about a formula being satisfiable, you will need to relate a
partial valuation with a formula being satisfied. The following predicate (or something similar)
may be useful for your tasks:

1 predicate sat_with_pval (pval : pval) (cnf : cnf) =

2 forall rho:valuation. compatible pval rho -> sat_with rho cnf

When writing the specifications for the partial eval cnf function we do not recommend to
take the definitions and transform them directly into predicates as below.

1 predicate cnf_satisfied (pval : pval) (cnf : cnf) =

2 forall i. 0 <= i < length cnf.clauses -> clause_satisfied pval cnf.clauses[

i]

3

4 predicate cnf_conflicting (pval : pval) (cnf : cnf) =

5 exists i. 0 <= i < length cnf.clauses /\ clause_conflicting pval cnf.clauses[

i]}

6 ...

Instead, you should write these predicates using the sat with predicate (or similar). Note
that the specification of sat relies on the predicate sat with. If you write your other definitions
without using this predicate then you would need to write many auxiliary lemmas to help the
provers understand the connection between sat with and those definitions.

1.3 Writeup (Final Submission, 20 pts)

Task 7 (20 pts). Writeup, to be handed in separately as file mp2-sol.pdf.

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.8

Testing your implementation

Even though you will be verifying your sat function, writing a correct implementation can be
challenging. Therefore, you may want to test that your function is producing the correct output
(sat/unsat) for your implementation.

Testing the algorithm and making up CNF formulas can be tedious in Why3. We provide a
test module with 20 formulas in test-sat.mlw.

You can execute the test module as follows:

1 why3 -L . execute test -sat.mlw --use=" TestSat" ’all()’

These commands print the number of “correct” answers. The default implementation in the
template always returns unsatisfiable and if you run it you should get the following output:

1 result: int = 5

2 globals: <none >

After you implemented the sat function, you should expect that number to be 10 if your
implementation is correct:

1 result: int = 10

2 globals: <none >

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.9

2 Congruence Closure

At the core of decision procedures or theorem provers for a variety of theories are algorithms
to compute the congruence closure of some equations including uninterpreted function symbols.
Even more fundamentally, congruence closure itself relies on computing and maintaining equiv-
alence classes of terms. An efficient data structure for this purpose is called union-find. You may
read, for example, the Wikipedia article on Disjoint-Set Data Structure. Union-find also has other
applications, such as in Kruskal’s algorithm for minimum spanning trees.

For the checkpoint, you will implement union-find and partially prove it correct and also pro-
duce checkable certificates. For the final submission you will use your union-find algorithm to
implement congruence closure, which will also produce a certificate.

Background: Union Find In the starter code cong-bare.mlw, you will find an implementation
of the bare union-find data structure. All elements that are divided into equivalence classes are
represented as integers 0 ≤ x < size. In a separate data structure maintained by a client, these
could be mapped, for example, to terms.

Throughout the algorithm, each equivalence class maintains a unique representative element
which we visualize as the root of a tree. In addition, each element has a parent, with the represen-
tative of a class functioning as its own parent. We call such representatives roots. To determine if
two elements x and y are in the same equivalence class we ascend the tree to find the representa-
tive of the classes for x and y, say, x̂ = findx and ŷ = find y. If x̂ = ŷ then x and y are in the same
class; otherwise they are not.

Initially, all elements are in their own (singleton) equivalence class and we call union to merge
equivalence classes. The operation unionx y accomplishes this by calculating the representatives
x̂ = findx and ŷ = find y. If these are equal, we are done. Otherwise, it sets the parent of x̂ to be ŷ
or the parent of ŷ to be x̂.

To decide between these two alternatives we maintain a rank for each root z that is a bound on
the longest chain of parent pointers for the tree below z. We set the parent of x̂ to ŷ if x̂ has strictly
smaller rank than ŷ and vice versa. If the ranks are equal, the choice is arbitrary, and we also have
to increase the rank of the resulting root by one.

The implementation is provided in the starter code as follows:

• is root uf x is true iff x is a root in uf .

• uf new n = uf returns a new union-find structure over elements 0 ≤ x < n, with each
element a root.

• find uf x = x̂ returns the root x̂ representing the equivalence class containing x.

• union uf x y modifies uf by merging the classes containing x and y.

2.1 Implementing Congruence Closure (Checkpoint, 40 pts)

You may want to review the description of congruence closure in Lecture 18 or other online infor-
mation you find helpful. We will implement incremental congruence closure in which equations are
asserted one by one and equality can be checked at any time. So at the high level we would have
the following interface:

MINI-PROJECT 2 150 PTS

https://en.wikipedia.org/wiki/Disjoint-set_data_structure


Decision Procedures MP2.10

1 type eqn

2 type cc

3 let cc_new (n : int) : cc

4 let merge (cc : cc) (e : eqn) : unit

5 let check_eq (cc : cc) (e : eqn) : bool

where cc is the type of the data structure maintaining the congruence closure, and cc new n creates
a new data structure over constants 0, . . . , n− 1 where each element is only equal to itself.

merge cc e updates cc to incorporate the equation e, and check eq cc e returns true if the equation
e follows from the equations asserted so far and the standard inference rules in the theory of
equality with uninterpreted function symbols (namely: reflexivity, symmetry, transitivity, and
monotonicity).

2.1.1 Representation of Terms

It is convenient to represent all constants as integers 0, . . . , n − 1, as in the implementation of
union-find. For a maximally streamlined implementation we represent all terms in Curried form.

1 type const = int

2 type term = Const const | App term term

Here are some examples, using a = 1, b = 2, etc.

Term Curried WhyML
c c Const 3
f(a) (f a) (App (Const 6) (Const 1))
f(g(a), b) ((f (g a)) b) (App (App (Const 6) (App (Const 7) (Const 1))) (Const 2))

During congruence closure and other operations we need to consider equality between subterms
of the input. In order to support this in a simple and efficient way we translate terms to so-called
flat terms using new constants that act as names for the subterms. For example, the term f(g(a), b)
(or ((f (g a)) b) in Curried form) might have the name c3 with the definitions

c1 = g a
c2 = f c1
c3 = c2 b

This representation means we only have to consider two kinds of equations in our algorithm,
c = (App a b) for constants a and b and a = b.

1 type const = int

2 type eqn =

3 | Defn const const const (* c = App a b *)

4 | Eqn const const (* a = b *)

2.1.2 The Incremental Congruence Closure Algorithm

In order to accommodate the definitions above, we slightly modify the interface.

1 module CongBare

2

3 use ...

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.11

4

5 type const = int

6 type eqn =

7 | Defn const const const (* c = app a b *)

8 | Eqn const const (* c = a *)

9

10 use UnionFindBare as U

11

12 type cc = { size : int ;

13 uf : U.uf ;

14 mutable eqns : list eqn }

15

16 let cc_new (n : int) : cc

17 let merge (cc : cc) (e : eqn) : unit

18 let check_eq (cc : cc) (a : const) (b : const) : bool

19

20 end

Here, UnionFindBare is your bare implementation from the checkpoint. You may make minor
modifications and extensions to its interface for the purposes of the final submission.

The field cc.uf should be a union-find data structure over the constants 0 ≤ c < cc.size and
cc.eqns should be a list of the equations you need for the computation of your algorithm.

At a high level, merge cc e should assert the equation e. This proceeds in two phases. In the
first phase, we suitably update cc.uf and cc.eqns to join equivalence classes. In the second phase,
we repeatedly propagate the equality to create a representation of the congruence closure.

The function check eq cc a b should just consult the union-find data structure to see if a and b
are in the same equivalence class.

Your implementation does not need to be particularly efficient, but it should be polynomial.
Furthermore, we constrain it to use union-find to maintain equivalence classes so that further stan-
dard improvements would be straightforward to make. Such further improvements are generally
related to indexing to avoid searching through lists.

Your contracts should be sufficient for safety of all array accesses, but do not otherwise have to
express correctness. Furthermore, you do not need to ensure termination.

As a consequence, you will need to test your implementation, and we will do so as well while
grading. In order to facilitate our testing harness, you must adhere to the significant parts of the
interface (namely, types const and eqn, and the types of the functions cc new, merge, and check eq).
You may, however, modify or add fields to the cc structure, since testing will not rely on these
internals.

Task 1 (40 pts). Implement and verify the safety the CongBare module as specified above.

We recommend you test your implementation but we do not formally require it. You should
hand in file cong-bare.mlw with modules UnionFindBare and CongBare.

2.2 Producing Certificates (Checkpoint, 20 pts)

In many practical scenarios where decision procedures or theorem provers are used, it is imprac-
tical to formally prove their correctness. That is unfortunate, as we want to be able to rely on the
results. To close this gap, we can extend the algorithm so it produces a certificate, or even verify
that it could produce a certificate when it gives a positive answer.

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.12

Applying this to union-find means we would like to instrument the code so that it can produce
a certificate showing that any element is equivalent to the representative of the equivalence class it
is in. We call a certificate that x and y belong to the same equivalence class a path from x to y. We
have the following constructors for paths, derived from the axioms for equivalence relations:

• reflx is a path from x to x.

• sym p is a path from y to x if p is a path from x to y.

• trans p y q is a path from x to z if p is a path from x to y and q is a path from y to z.

Whenever unionx y is called, the client of the data structure must provide a path from x to y which
somehow justifies the equivalence. For example, if x = a + 1 and y = 1 + a, the client might
provide a path explaining that x and y are equivalent due to the commutativity of addition. The
implementation of union-find takes these on faith (they are the client’s responsibility, after all) but
can apply refl, sym, and trans to build longer paths from those that are given.

We keep the type of path abstract so that the implementation of union-find cannot “fake” any
paths. The properties listed above are summarized using the axioms below.

1 type path (* abstract *)

2 function refl (x : elem) : path

3 function sym (p : path) : path

4 function trans (p1 : path) (x : elem) (p2 : path) : path

5

6 predicate connects (p : path) (x : elem) (y : elem)

7 axiom c_refl : forall x. connects (refl x) x x

8 axiom c_sym : forall p x y. connects p x y -> connects (sym p) y x

9 axiom c_trans : forall x y z p q.

10 connects p x y -> connects q y z -> connects (trans p y q) x z

The union-find data structure now maintains a ghost array path of paths, where for every
element x, path[x] is a path connecting x to parent[x]. The information is sufficient to produce a
path from x to the representative x̂ of its equivalence class.

Task 2 (25 pts). We update the interface as follows:
1 type uf = { size : int ;

2 parent : array elem ;

3 rank : array int ;

4 ghost path : array path }

5

6 let uf_new (n : int) : uf

7 let find (uf : uf) (x : elem) : (elem, ghost path)

8 let union (uf : uf) (x : elem) (y : elem) (ghost pxy : path) : unit

For the checkpoint, you do not need to write contracts or verify them, but you should aim for the
following functionality (which you will need to verify for the final submission):

• find uf x = (x̂, p) should construct a path from x to x̂ while traversing the data structure. You
want to make sure that p is indeed a correct path from x to x̂, so that you will be able to
verify it for the final submission.

• union uf x y p may assume that p is a path from x to y. This means the client has to supply the
evidence for the equality x and y. Since union modifies uf by merging the classes of x and y,
it will need to update the path field to maintain the data structure invariants.

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.13

2.3 Specify and Verify Union-Find (Final Submission, 20 pts)

For the final submission you will update your Congruence Closure algorithm to produce and
verify the correctness of proofs of equality. To lay the groundwork for this, you will need to
specify and verify key properties of your implementation of union-find with paths.

Task 3 (20 pts). Update UnionFindPath to ensure that the following properties hold:

• A data structure invariant for uf which ensures that for every element x, path[x] is a path
connecting x to parent[x].

• find uf x = (x̂, p) should ensure that p is a path from x to x̂. This path should be constructed
while traversing the data structure. Your postcondition should enforce that p is indeed a
path from x to x̂.

• union uf x y p can formally require that p is a path from x to y. In terms of postconditions,
there are no specifically required properties that you must prove to receive credit, but any
postconditions you find useful should be verified, and any verification conditions arising
from data structure invariants must also be verified.

Your code should include sufficient data structure invariants and contracts to guarantee these
properties for find and union. Your contracts still do not need to express, for example, that union
really represents a union. It therefore remains your responsibility that the code is correct. You
do not need to prove termination, but where ever your code accesses arrays, it should prove that
the accesses are safe.

2.4 Instrumenting Congruence Closure (Final Submission, 50 pts)

In order for the Congruence Closure algorithm to provide proof certificates, we reuse the abstract
type of path in the union-find data structure, extended with two new constructors: hyp e and
mono p q e e′ to represent hypotheses (assumptions) and the rule of monotonicity.

hyp (Eqn a b) is a path from a to b. This will be used if the client asserts an equation a = b by
calling merge cc (Eqn a b).

mono p q (Defn c a b) (Defn c′ a′ b′) is a path from c to c′, if p is a path from a to a′ and q is a path
from b to b′. This will be used if the algorithm uses monotonicity to conclude App a b = App a′ b′

from the equalities a = a′ and b = b′.
Note that any equation used as an argument to hyp and mono should be one directly passed

into merge. This could be enforced in a complicated manner with an additional layer of abstraction,
but we forego this complication since the client can still check separately that all uses of hyp and
mono in a path rely only on equations it asserted.

1 module CongPath

2

3 use ...

4

5 type const = int

6

7 type eqn =

8 | Defn const const const (* c = app a b *)

9 | Eqn const const (* c = a *)

10

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.14

11 use UnionFindPath as U

12

13 function hyp (e : eqn) : U.path

14 axiom c_hyp : forall a b.

15 U.connects (hyp (Eqn a b)) a b

16

17 function mono (p : U.path) (q : U.path) (e : eqn) (e’ : eqn) : U.path

18 axiom c_mono : forall p q a a’ b b’ c c’.

19 U.connects p a a’ -> U.connects q b b’ ->

20 U.connects (mono p q (Defn c a b) (Defn c’ a’ b’)) c c’

21

22 type cc = { size : int ;

23 uf : U.uf ;

24 mutable eqns : list eqn }

25

26 let cc_new (n : int) : cc

27 let merge (cc : cc) (e : eqn) : unit

28 let check_eq (cc : cc) (a : const) (b : const) : (bool, ghost (option U.path)

)

29

30 end

We do not supply a path to merge since the merge function itself can construct it, as explained
above.

For this instrumentation you may arbitrarily change your bare implementation, except that
you should use your UnionFindPath.

Note that your contracts should guarantee two things: (1) safety (as before) and (2) the path
provided with the result of check eq cc a b when a and b are in fact equal, must go from a to b.

Task 4 (40 pts). Add paths to serve as certificates to your bare implementation as specified above.

We recommend you test your implementation but we do not formally require it. You should
hand in file cong-path.mlw with modules UnionFindPath and CongPath.

2.5 Writeup (Final Submission, 20 pts)

Task 5 (20 pts). Writeup, to be handed in separately as file mp2-final.pdf.

MINI-PROJECT 2 150 PTS


	SAT Solver
	Building blocks of DPLL (Checkpoint: 70 pts)
	SAT solver with unit propagation (Final Submission, 60 pts)
	Writeup (Final Submission, 20 pts)

	Congruence Closure
	Implementing Congruence Closure (Checkpoint, 40 pts)
	Representation of Terms
	The Incremental Congruence Closure Algorithm

	Producing Certificates (Checkpoint, 20 pts)
	Specify and Verify Union-Find (Final Submission, 20 pts)
	Instrumenting Congruence Closure (Final Submission, 50 pts)
	Writeup (Final Submission, 20 pts)


