
Assignment 3
Dynamic Duo

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Friday, Feb 14, 2025
70 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst3.zip to Assignment 3 (Code). You can generate this file by running
make handin. This will include your solutions partition.mlw and the proof session in
partition/.

• Submit a PDF containing your answers to the written questions to Assignment 3 (Written).
You may use the file asst3.tex as a template and submit asst3.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst3.tex and a solution template asst3-sol.tex in the handout to get you started on this.

ASSIGNMENT 3 DUE 23:59PM, FRIDAY, FEB 14, 2025
70 PTS

http://www.cs.cmu.edu/~15414/assignments.html

Dynamic Duo HW3.2

1 Looking into the Past (30 pts)

In ordinary modal logic there is a ■P modality that expresses “P has always been true”. We can
extend dynamic logic with a corresponding operator LαMP read as “before α P”. Its semantics is
defined by

ω |= LαMP iff for all µ such that µJαKω we have µ |= P

For each of the following parts, develop axioms for nondeterministic dynamic logic that allow you
to break down proving LαMP into properties of smaller programs or eliminate them altogether.
You only need to prove one direction of one of these properties, but it may be helpful to convince
yourself your answers are correct.

Task 1 (5 pts). Lα ; βMP

Task 2 (5 pts). Lα ∪ βMP

Task 3 (5 pts). L?QMP

Task 4 (5 pts). Lα∗MP . In this task, both sides can refer to α∗.

Task 5 (10 pts). Prove one direction of othe axiom from Task 2. For this purpose, if your axiom
reads Lα ∪ βMP ↔ Q, then you should assume what ω |= Q, and prove that ω |= Lα ∪ βMP . The
proof regarding sequential composition in Lecture 6, Section 5 provides a good model for the
format and level of detail we expect.

2 Day of Judgment (20 pts)

Task 6 (12 pts). For each of the following judgments in dynamic logic, find a program (substitute
it for α) that makes the judgment hold. If no such program exists, explain why not. Throughout
these judgments, ω is an arbitrary state.

1. ω[x 7→ 1, z 7→ 5] |= ¬⟨α⟩(z = 1) ∧ [α](z = 1)

2. ω[x 7→ 1, y 7→ 0] |= x > y → ([α](x < 0) ∧ [α;α](x < 0) ∧ ¬[α∗](x < 0))

3. ω[u 7→ 5, v 7→ 5] |= ¬[α](u ̸= v ∨ ⟨α⟩(u = v))

4. ω[x 7→ 0] |= (⟨α⟩(x = 7)) ∧ (¬[α](x = 7))

Task 7 (8 pts). For each of the following judgments in dynamic logic, find a state ω (an assignment
to variables) that makes the judgment hold. Recall that skip ≜ ? true.

1. ω |= [(?(x > 0); x← x+ 2)∗ ; ?(x ≤ 0)] (x ̸= 0)

2. ω |= [(?(x > y); x← x− 1; y ← y + 1)∗ ; ?(x ≤ y)] (x > 0).

3. ω |= [if (x > 10) (y ← y + x) (skip)] (y > 2 → x > 10).

ASSIGNMENT 3 DUE 23:59PM, FRIDAY, FEB 14, 2025
70 PTS

Dynamic Duo HW3.3

3 Don’t Go Into Debt (20 pts)

This problem introduces the concept of an exception in WhyML, which may be helpful in some of
the later programming assignments. We briefly summarize the constructs relevant to this problem
(for more information see the Why3 documentation and some Why3 examples).

exception exn τ∗ declare exn with arguments of type τ∗

raise exn e∗ raise exn with arguments e∗

And the function contract
raises {exn → P}

verifies the postcondition P if exn is raised inside the function and propagates to the caller.
Consider the following simple example where we show the use of exceptions. We have a

function safe_get that accesses the index i of an array and returns the content of the array at
position i or raises an exception if i is out-of-bounds.

1 exception OutOfBounds

2

3 let safe_get (a: array int) (i: int) =

4 ensures { result = a[i] }

5 ensures { 0 <= i < length a}

6 raises { OutOfBounds -> i < 0 \/ i >= length a}

7 if i < 0 || i >= length a then raise OutOfBounds

8 else return a[i]

Task 8 (15 pts). Write and verify a function sum_array (a : array int) : int that sums the
elements of the array a from left to right. If the partial sum ever becomes negative, the function
should short-circuit by raising Negative i, where i is the index of the array at which the sum first
became negative. For example, calling sum_array [2,-1,3,-5,8] should raise Negative 3, since
2 + (−1) + 3 + (−5) < 0.

You can find a solution template in the file arraysum.mlw that contains the code below.

1 module SumNonNeg

2

3 use array.Array

4 use array.ArraySum

5 use int.Int

6

7 exception Negative int

8

9 let sum_array (a : array int) : int = 0

10

11 end

Hint: You may find the standard library module array.ArraySum helpful.

ASSIGNMENT 3 DUE 23:59PM, FRIDAY, FEB 14, 2025
70 PTS

https://www.why3.org/doc/
https://www.why3.org/doc/whyml.html#problem-4-n-queens
https://www.why3.org/stdlib/array.html

	Looking into the Past (30 pts)
	Day of Judgment (20 pts)
	Don't Go Into Debt (20 pts)

