1: Nondeterministic while programs α

Program Op	peration	Effect
$x \leftarrow e$ assi	gnment	assigns value of term e to variable x
?Q test		check truth of first-order formula Q in current state
α ; β sequ	ential composition	β starts after α finishes
$\alpha \cup \beta$ non	deterministic choice	run either α or β
α^* non	deterministic repetition	repeats α <i>n</i> -times for any $n \in \mathbb{N}$

2: Semantics of while programs α as a relation $\omega \|\alpha\|\nu$ between prestates ω and poststates ν

```
\omega[\![x\leftarrow e]\!]\nu \text{ iff } \omega[x\mapsto a] = \nu \text{ where } a = \omega[\![e]\!]
\omega[\![?Q]\!]\nu \text{ iff } \omega \models Q \text{ and } \omega = \nu
\omega[\![\alpha ; \beta]\!]\nu \text{ iff } \omega[\![\alpha]\!]\mu \text{ and } \mu[\![\beta]\!]\nu \text{ for some } \mu
\omega[\![\alpha \cup \beta]\!]\nu \text{ iff } \omega[\![\alpha]\!]\nu \text{ or } \omega[\![\beta]\!]\nu
\omega[\![\alpha^*]\!]\nu \text{ iff } \omega[\![\alpha]\!]^n\nu \text{ for some } n \ge 0
\omega[\![\alpha]\!]^0\nu \text{ iff } \omega = \nu
\omega[\![\alpha]\!]^{n+1}\nu \text{ iff } \omega[\![\alpha]\!]\mu \text{ and } \mu[\![\alpha]\!]^n\nu \text{ for some } \mu
```

3: Semantics of Dynamic Logic formulas P in state ω

```
\omega \models e_1 \geq e_2 \text{ iff } \omega[\![e_1]\!] \geq \omega[\![e_2]\!]
\omega \models \neg P \qquad \text{iff } \omega \not\models P \text{ that is, it is not the case that } \omega \models P
\omega \models P \wedge Q \quad \text{iff } \omega \models P \text{ and } \omega \models Q
\omega \models P \rightarrow Q \quad \text{iff } \omega \models P \text{ implies } \omega \models Q
\omega \models \exists x P \quad \text{iff } \omega[x \mapsto a] \models P \text{ for some integer } a
\omega \models \forall x P \quad \text{iff } \omega[x \mapsto a] \models P \text{ for all integers } a
\omega \models \langle \alpha \rangle P \quad \text{iff } \nu \models P \text{ for some state } \nu \text{ such that } \omega[\![\alpha]\!] \nu
\omega \models [\alpha]P \quad \text{iff } \nu \models P \text{ for all states } \nu \text{ such that } \omega[\![\alpha]\!] \nu
\omega \models \Box P \quad \text{iff } \nu \models P \text{ for all states } \nu
```

4: Selected dynamic logic axioms

```
\langle \cdot \rangle \langle \boldsymbol{\alpha} \rangle \boldsymbol{P} \leftrightarrow \neg [\alpha] \neg P
[\leftarrow] [\boldsymbol{x} \leftarrow \boldsymbol{e}] \boldsymbol{P}(\boldsymbol{x}) \leftrightarrow (\forall x'. x' = \boldsymbol{e} \rightarrow P(x')) \quad (x' \text{ not in } \boldsymbol{e} \text{ or } P(x))
[?] [?\boldsymbol{Q}] \boldsymbol{P} \leftrightarrow (\boldsymbol{Q} \rightarrow \boldsymbol{P})
[\cup] [\boldsymbol{\alpha} \cup \boldsymbol{\beta}] \boldsymbol{P} \leftrightarrow [\alpha] \boldsymbol{P} \wedge [\boldsymbol{\beta}] \boldsymbol{P}
[;] [\boldsymbol{\alpha}; \boldsymbol{\beta}] \boldsymbol{P} \leftrightarrow [\alpha] [\boldsymbol{\beta}] \boldsymbol{P}
I [\boldsymbol{\alpha}^*] \boldsymbol{P} \leftrightarrow \boldsymbol{P} \wedge [\alpha^*] (\boldsymbol{P} \rightarrow [\alpha] \boldsymbol{P})
```

5: Weakest Preconditions

```
\begin{array}{lll} wp(\alpha \ ; \beta)Q & = & wp(\alpha)(wp(\beta)Q) \\ wp(\alpha \cup \beta)Q & = & wp(\alpha)Q \land wp(\beta)Q \\ wp(?P)Q & = & P \rightarrow Q \\ wp(\alpha^*)Q & = & Q \land wp(\alpha)(wp(\alpha^*)Q) \\ wp(x \leftarrow e)Q(x) & = & \forall x'. \ x' = e \rightarrow Q(x') & (x' \not\in e, Q(x)) \end{array}
```

6: Strongest Postconditions

$$sp(\alpha;\beta)P = sp(\beta)(sp(\alpha)P)$$

$$sp(\alpha \cup \beta)P = sp(\alpha)P \vee sp(\beta)P$$

$$sp(?Q)P = Q \wedge P$$

$$sp(\alpha^*)P = P \vee sp(\alpha^*)(sp(\alpha)P)$$

$$sp(x \leftarrow e(x))(P(x)) = \exists x'.x = e(x') \wedge P(x') \quad (x' \notin e(x), P(x))$$

7: Sequent Calculus

$$\frac{\Gamma,P\vdash P,\Delta}{\Gamma,P\vdash P,\Delta} id \qquad \frac{\Gamma\vdash P,\Delta \quad \Gamma,P\vdash \Delta}{\Gamma\vdash P,\Delta} cut$$

$$\frac{\Gamma,P\vdash \Delta}{\Gamma\vdash P,\Delta} \neg R \qquad \frac{\Gamma\vdash P,\Delta}{\Gamma,\neg P\vdash \Delta} \neg L$$

$$\frac{\Gamma\vdash P,\Delta \quad \Gamma\vdash Q,\Delta}{\Gamma\vdash P\land Q,\Delta} \land R \qquad \frac{\Gamma,P,Q\vdash \Delta}{\Gamma,P\land Q\vdash \Delta} \land L$$

$$\frac{\Gamma\vdash P,Q,\Delta}{\Gamma\vdash P\lor Q,\Delta} \lor R \qquad \frac{\Gamma,P\vdash \Delta \quad \Gamma,Q\vdash \Delta}{\Gamma,P\lor Q\vdash \Delta} \lor L$$

$$\frac{\Gamma,P\vdash Q,\Delta}{\Gamma\vdash P\to Q,\Delta} \rightarrow R \qquad \frac{\Gamma\vdash P,\Delta \quad \Gamma,Q\vdash \Delta}{\Gamma,P\lor Q\vdash \Delta} \rightarrow L$$

$$\frac{\Gamma\vdash P,P,\Delta}{\Gamma\vdash P,\Delta} contractionR \qquad \frac{\Gamma\vdash P,P,\Delta}{\Gamma,P\vdash \Delta} contractionL$$

$$\frac{\Gamma\vdash P(a),\Delta}{\Gamma\vdash \forall x.P(x),\Delta} \forall R^a \qquad \frac{\Gamma,P(e)\vdash \Delta}{\Gamma,\forall x.P(x)\vdash \Delta} \forall L$$

$$\frac{\Gamma\vdash P(e),\Delta}{\Gamma\vdash \exists x.P(x),\Delta} \exists R \qquad \frac{\Gamma,P(a)\vdash \Delta}{\Gamma,\exists x.P(x)\vdash \Delta} \exists L^a$$

8: Resolution

$$\frac{p \vee C \quad \neg p \vee D}{C \vee D} \ resolution$$

9: Equality Logic with Uninterpreted Functions

The theory of equality with uninterpreted functions has a signature that consists of a single binary predicate =, and all possible constant (a, b, c, \ldots) and function (f, g, h, \ldots) symbols:

$$\Sigma_{\mathsf{E}}: \{=, a, b, c, \dots, f, g, h, \dots\}$$

Axioms:

$$\forall x.x = x$$

$$\forall x, y.x = y \rightarrow y = x$$

$$\forall x, y, z.x = y \land y = z \rightarrow x = z$$

$$\forall x, y.x = y \rightarrow f(\bar{x}) = f(\bar{y}) \text{ (congruence axiom)}$$

10: Semantics of Linear Temporal Logic (LTL)

The suffix of a trace σ starting at step $k \in \mathbb{N}$ is denoted σ^k and only defined if the trace has at least length k. That is

$$(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_{k-1}, \sigma_k, \sigma_{k+1}, \sigma_{k+2}, \dots)^k = (\sigma_k, \sigma_{k+1}, \sigma_{k+2}, \dots)$$

The truth of LTL formulas in a trace σ is defined inductively as follows:

- (1) $\sigma \models F$ iff $\sigma_0 \models F$ for a state formula F provided that $\sigma_0 \neq \Lambda$
- (2) $\sigma \models \neg P$ iff $\sigma \not\models P$, i.e. it is not the case that $\sigma \models P$
- (3) $\sigma \models P \land Q \text{ iff } \sigma \models P \text{ and } \sigma \models Q$
- (4) $\sigma \models \mathbf{X}P \text{ iff } \sigma^1 \models P$
- (5) $\sigma \models \Box P \text{ iff } \sigma^i \models P \text{ for all } i \geq 0$
- (6) $\sigma \models \Diamond P \text{ iff } \sigma^i \models P \text{ for some } i \geq 0$
- (7) $\sigma \models P \cup Q$ iff there is an $i \geq 0$ such that $\sigma^i \models Q$ and $\sigma^j \models P$ for all $0 \leq j < i$

In all cases, the truth-value of a formula is, of course, only defined if the respective suffixes of the traces are defined.

11: Kripke structure

A Kripke frame (W, \curvearrowright) consists of:

- \bullet a set W of states;
- a transition relation $\curvearrowright \subseteq W \times W$ where $s \curvearrowright t$ indicates that there is a direct transition from s to t in the Kripke frame (W, \curvearrowright) .

A Kripke structure $K = (W, \curvearrowright, v, I)$ is:

- a Kripke frame (W, \curvearrowright) with a mapping $v: W \to 2^V$, where 2^V is the powerset of V assigning truth-values to all the propositional atoms in all states;
- a Kripke structure has a set of initial states $I \subseteq W$.

12: Computation structure

A Kripke structure $K = (W, \curvearrowright, v, I)$ is called a *computation structure* if:

- W is a finite set of states;
- every element $s \in W$ has at least one direct successor $t \in W$ with $s \curvearrowright t$.

A (computation) path is an infinite sequence $s_0, s_1, s_2, s_3, \ldots$ of states $s_i \in W$ such that $s_i \curvearrowright s_{i+1}$ for all i. We will always assume that the structures used in model checking are computation structures, unless otherwise noted.

13: Semantics of Computation Tree Logic (CTL)

In a fixed Kripke structure $K = (W, \curvearrowright, v)$, the truth of CTL formulas in state s is defined as follows:

- (1) $s \models p$ iff v(s)(p) = true for atomic propositions p
- (2) $s \models \neg P$ iff $s \not\models P$, i.e. it is not the case that $s \models P$
- (3) $s \models P \land Q \text{ iff } s \models P \text{ and } s \models Q$
- (4) $s \models \mathbf{AX}P$ iff all successors t with $s \curvearrowright t$ satisfy $t \models P$
- (5) $s \models \mathbf{EX}P$ iff at least one successor t with $s \curvearrowright t$ satisfies $t \models P$
- (6) $s \models \mathbf{AG}P$ iff all paths s_0, s_1, s_2, \ldots starting in $s_0 = s$ satisfy $s_i \models P$ for all $i \geq 0$
- (7) $s \models \mathbf{AF}P$ iff all paths s_0, s_1, s_2, \ldots starting in $s_0 = s$ satisfy $s_i \models P$ for some $i \geq 0$
- (8) $s \models \mathbf{EG}P$ iff some path s_0, s_1, s_2, \ldots starting in $s_0 = s$ satisfies $s_i \models P$ for all $i \geq 0$
- (9) $s \models \mathbf{EF}P$ iff some path s_0, s_1, s_2, \ldots starting in $s_0 = s$ satisfies $s_i \models P$ for some $i \geq 0$
- (10) $s \models \mathbf{A}[P \cup Q]$ iff all paths s_0, s_1, s_2, \ldots starting in $s_0 = s$ have some $i \geq 0$ such that $s_i \models Q$ and $s_i \models P$ for all $0 \leq i \leq i$
- (11) $s \models \mathbf{E}[P \cup Q]$ iff some path s_0, s_1, s_2, \ldots starting in $s_0 = s$ has some $i \geq 0$ such that $s_i \models Q$ and $s_j \models P$ for all $0 \leq j < i$

Given a Kripke structure K, we say that K satisfies P iff for all initial states s_0 of K, $s_0 \models P$.