
Real World Verification
Pratap Singh

some slides courtesy of Bryan Parno, Xavier Leroy, Tahina Ramananandro



This lecture’s material 
will NOT be on the final!

You should still pay attention because…

• Industrial/“practical” examples of program verification


• Applications of ideas from class


• Research ideas! Email me 😃



Outline

• Why verify systems software?

• What’s hard about verifying systems software?

• Automated program verifiers

• Some projects!

• Compilers

• OS kernels

• Distributed systems

• Cryptography



Why verify systems software?



Why verify systems software?

• Ariane V rocket: June 1996



Why verify systems software?

• Ariane V rocket: June 1996



Why verify systems software?

• Ariane V rocket: June 1996

An incorrectly handled software exception resulted 
from a data conversion of a 64-bit floating point to a 
16-bit signed integer value. The value of the floating 
point number that was converted was larger than what 
could be represented by a 16-bit integer, resulting in 
an operand error not anticipated by the Ada code.



Why verify systems software?

• Therac-25 radiation therapy machine



Why verify systems software?

• Therac-25 radiation therapy machine

Between June 1985 and January 1987, […] the 
Therac-25 massively overdosed six people.


Previous models had hardware interlocks to prevent 
[…] faults, but the Therac-25 had removed them, 
depending instead on software checks for safety.



Why verify systems software?



Why verify systems software?

• Not just to stop bugs…Systems are really hard to get right in the first place!



Why verify systems software?

• Not just to stop bugs…Systems are really hard to get right in the first place!



What’s hard about verifying systems software?

Not exhaustive…


• Complexity


• Concurrency


• Performance


• Reasoning about memory/pointers



What’s hard about verifying systems software?

PLDI 2021

• Simple embedded system: turns a lightbulb on 
when it receives a particular network packet


• Fully verified hardware (RISC-V processor) and 
software (compiler, network/lightbulb driver)

“around four person-years of work”



Automated program verifiers

Cayden will talk about interactive 
theorem proving on Thursday!



Dafny

• Developed at Microsoft Research by Rustan Leino (2009-present)


• Imperative and functional features, inspired by C#


• Compiles to C#, Java, JS, Python,…


• Recent significant investment from Amazon



Dafny vs Why3



Dafny under the hood Dafny code 
Specifications 

Implementations 
Proofs

Boogie code

SMT queries

SAT/UNSAT/
timeout

Dafny

Boogie

Z3

used by other tools

(VCC, Chalice, Spec#…)



Dafny under the hood Dafny code 
Specifications 

Implementations 
Proofs

Boogie code

SMT queries

SAT/UNSAT/
timeout

Dafny

Boogie

Z3

Compared to Why3, Dafny…


• is specialized to one prover backend


• can adapt to this backend’s properties


• (arguably) produces “better” SMT queries


• provides less visibility into verification


• (no “Task view”)



Memory reasoning
• Pointers are hard because of aliasing:

x

y

1 2 3 4
x[0] := 5; 
assert y[0] == 1; 🙁

5

• APV tools verify one function body at a time


• But all functions share the same global mutable heap


• Why3’s solution: look at the function body to see what memory it modifies


• Doesn’t scale to large functions/programs!



Memory reasoning in Dafny: Framing

• Each method specifies which mutable memory it modifies 

• Method callers know that other memory remains unchanged

✅



Rust verification

• Rust promises safety at zero cost


• Low-level memory control, without the footguns of C


• Rust’s type system prohibits aliasing!*


• Several verification tools built on top of Rust:

*specifically, it only allows aliasing when the pointers are read-only

Prusti
Creusot

Aeneas
RustBelt

RustHorn

Verus



Verus

This is a Rust compiler error—no SMT query required!

https://play.verus-lang.org

OOPSLA 2023

https://play.verus-lang.org


Verified real-world systems









Verified compilers

• Every program goes through the 
compiler!


• Miscompilation bugs are rare but 
very costly


• Compiler verification is not new



Verified compilers: CompCert

• Formally verified compiler for C, targeting ARM, x86, RISC-V, …


• Includes complex compiler optimizations


• 50,000 lines in the Coq proof assistant

CACM 2004



Verified compilers: CompCert

• “Behaves like” requires mechanized semantics for C and assembly



Verified compilers: CompCert

• Many optimization/lowering passes


• Easier to verify many small 
transformations



Verified compilers: CompCert

• Some passes (e.g., register allocation) are just too hard to prove


• Solution: translation validation



Verified compilers: CompCert
• Used in industry!



seL4

• Formally verified operating system microkernel


• Proved using Isabelle/HOL, an interactive theorem prover


• Properties:


• Integrity: data is only changed as requested


• Confidentiality: data can only be read with appropriate permission



seL4

Today, seL4 is part of an ecosystem supporting active use in various 
domains including automotive, aviation, infrastructure, medical, and 
defence. A key highlight demonstrating its fit for real-world deployment 
was in the DARPA-funded HACMS program, where seL4 was used to 
protect an autonomous helicopter against cyber-attacks.



IronFleet
SOSP 2015

• Distributed systems are very difficult to design and implement:


• Protocols must handle concurrent execution on separate machines


• Implementation concerns can break protocol assumptions


• Hard to uncover race conditions with simple testing


• Can verification help?



IronFleet
SOSP 2015

“We show how to build complex, efficient 
distributed systems whose implementations 

are provably safe and live.”

Implementations are correct, 
not just abstract protocols

The system does not crash 
or otherwise go wrong

The system will make progress 
given sufficient time 

(no livelock or deadlock)

Proofs are 
machine-
checked 
in Dafny



IronFleet
SOSP 2015

• Methodology:


• Specify the whole protocol as a global state machine


• Prove that individual role specs obey the global state machine


• Prove that role implementations obey their specifications 

• All implemented in Dafny



IronFleet
SOSP 2015

• ~50,000 lines of Dafny, 3.7 person-years of work


• Performance competitive with unverified versions!



Cryptography

• Cryptography is complicated


• Cryptography needs to be fast  
(<1 cycle per byte for modern encryption)


• Combination of C and hand-optimized 
assembly


• Bugs in cryptography libraries are 
extremely bad!



Cryptography: EverCrypt

S&P 2020

• Symmetric-key ciphers (AES, Chacha-Poly)


• Hashes (SHA, Blake2)


• MACs (HMAC, Poly1305)


• KDFs (HKDF)


• Elliptic curves (curve25519, ed25519, p256)


• …



Cryptography: EverCrypt

• 124K lines of verified code and proofs in F*


• (Sometimes) faster than unverified code!



Cryptography: Fiat
S&P 2019

• Elliptic-curve crypto depends on arithmetic over finite fields


• Simple in math, gnarly in code!


• Idea: automatically search for programs to implement finite-field 
arithmetic, along with a proof of correctness 

• Relies on automatic proof search and type theory of Coq



Takeaways

• Verification can be practical!


• Automated and manual tools can scale up to “production-grade” systems


• A lot of work remains to make verification commonplace


