Real World Verification

Pratap Singh

some slides courtesy of Bryan Parno, Xavier Leroy, Tahina Ramananandro

This lecture’s material
will NOT be on the final!

You should still pay attention because...

* [ndustrial/“practical” examples of program verification

* Applications of ideas from class

e Research ideas! Email me &

Outline

 Why verify systems software?
 What’s hard about verifying systems software?
 Automated program verifiers
e Some projects!
« Compilers
 OS kernels
* Distributed systems
* Cryptography

Why verify systems software?

Why verify systems software?

e Ariane V rocket: June 1996

Why verify systems software?

June 1996

e Ariane V rocket

-
m.

h

N

oy

Why verify systems software?

e Ariane V rocket: June 1996

V')

An incorrectly handled software exception resulted
from a data conversion of a 64-bit floating point to a
16-bit signed integer value. The value of the floating

point number that was converted was larger than what
could be represented by a 16-bit integer, resulting In
an operand error not anticipated by the Ada code.

Why verify systems software?

 Therac-25 radiation therapy machine

Why verify systems software?

 Therac-25 radiation therapy machine

Between June 1985 and January 1987, [...] the
Therac-25 massively overdosed six people.

Previous models had hardware interlocks to prevent
[...] faults, but the Therac-25 had removed them,
depending instead on software checks for safety.

Why verify systems software?

Buggy code update triggers Bing, Yahoo
outage

Jan 5, 2015 9:19 AM
Fv."ea L/.")deu" \SO.—[;'. alrg

Google blames software bug for Friday night Gmail outage

s Promoted Content

JUST IN With the launch of its Edge browser, Microsoft ends an a

Topic: Amazon Follow via:

Amazon Web Services suffers
outage, takes down Vine,
Sl Instagram, others with it

Search giant
users unable

Summary: The cloud giant suffered an outage for about an hour on Sunday, showing once again
the perils of an outsourced cloud service, as many AWS customers went down with it.

3 By Zack Whittaker for Between the Lines | August 26, 2013 -- 13:22 GMT (06:22 PDT)
-
e -
ot ¢ W Follow @zackwhittaker - 10.6K followers Get the ZDNet Product Watch newsletter now

Why verify systems software?

* Not just to stop bugs...Systems are really hard to get right in the first place!

Why verify systems software?

* Not just to stop bugs...Systems are really hard to get right in the first place!

LA ' s qeﬂe(‘q{' Y b
i i o 2\0‘ ' ‘?‘qv\dOvS ’ Joo? .
. nello .
., Nowbe '
Clipnt
eirver
S »,
SE’(‘\/efﬁ_ B
Decver
SCe vt

Figure 1: Typical Figure 2 from Byzantine fault paper: Our network protocol

What’s hard about verifying systems software?

Not exhaustive...
o Complexity

* Concurrency
* Performance

 Reasoning about memory/pointers

What’s hard about verifying systems software?

Integration Verification across Software and

. . Hardware for a Simple Embedded System
 Simple embedded system: turns a lightbulb on Andr:msen* d

when It recelves a particular network packet Sarmuel Gruetter

Joonwon Choi
Clark Wood
Adam Chlipala

e Fully verified hardware (RISC-V processor) and MIT CSALL oI 2021
software (compiler, network/lightbulb driver)

Table 4. Lines of code

Excluded: 2 Q, Sy .

oy o S |

unrelated 10044 S 9 S . 5 :

2 = |

library 7301 5 E‘o il (I

imports 1907 S > | S "go § f_* |

doc 354 E) é "é .g % i ;

Kami 48294 | & | 8 | 8 | 3 {8 %|

E|E| 8| 2f&aE

lightbulb app 176 | 130 | 33 | 14433 10.1 |
program logic 0 | 208 | 552 | 1785¢| —
compiler 931 | 1114 | 1325 | 6654§| 10.8
SW/HW interface| 0 | 2053 | 991 | 3804} -—
end-to-end 0 254 | 74 | 539§ -

Automated program verifiers

Cayden will talk about interactive
theorem proving on Thursday!

Dafny

 Developed at Microsoft Research by Rustan Leino (2009-present)
e |Imperative and functional features, inspired by C#
« Compiles to C#, Java, JS, Python,...

* Recent significant investment from Amazon

Dafny vs Why3

= mystery2.dfy > @ g = mystery2.mlw

module Mystery2
method g(n: int) returns (result: int)l
requires n >= 0 use int.Int
ensures result >= 0
&& result * result <= n let g (n : int) : int =
& n < (result + 1) * (result + 1) requires { n >= 0 }
ensures { result >= 0
var a := 0; /\ result *x result <= n
var b := 0; /\ n < (result+l)*(result+1) }
var ¢ := 0; let ref a = 0 1in
while b <= n let ref b = 0 in
invariant 0 a let ref c = 0 1in
invariant b a * a while b <= n do
invariant c 2 x a invariant H 0
invariant a 9 || (a-1) * (a-1) <= n invariant { b
invariant { c
b + ¢ + 1; invariant { a
C + 2; variant { n -
a + 1; b<-b+c+1;
C<—-C+ 2,
| > Nn; a<—-a+1
result := a - 1; done ;
assert { b > n };
a-1

Dafny under the hood

Boogie: An Intermediate
Verification Language

Established: December 10, 2008

&

used by other tools
(VCC, Chalice, Spect#...)

Dafny code

Specifications
Implementations
Proofs

Boogie code

Boogie

SMT queries

SAT/UNSAT/
timeout

Dafny under the hood

Compared to Whya3, Dafny...

* |S specialized to one prover backend

e can adapt to this backend’s properties

e (arguably) produces “better” SMT queries
» provides less visibility into verification

e (no “Task view”)

Dafny code

Specifications
Implementations
Proofs

Boogie code

Boogie

SMT queries

SAT/UNSAT/
timeout

Memory reasoning

* Pointers are hard because of aliasing:

X

x[Q] := 5;

/ assert y[0] == 1; @
y

APV tools verify one function body at a time
 But all functions share the same global mutable heap
 Why3’s solution: look at the function body to see what memory it modifies

 Doesn’t scale to large functions/programs!

Memory reasoning in Dafny: Framing

 Each method specifies which mutable memory it modifies

 Method callers know that other memory remains unchanged

method array_update(a: array<int>, b: array<int>)
requires a.Length > 0 && b.Length > 0
modifies a

alo] := 3;
assignment might update an array element not in the enclosing

context's modifies clause Verifiel

blO] :=5;
array_update(a, b);

:b@==,'7

Rust verification

* Rust promises safety at zero cost

* |ow-level memory control, without the footguns of C
* Rust’s type system prohibits aliasing!”
e Several verification tools built on top of Rust:

Creusot RustHorn

RustBelt
Aeneas

Prusti
Verus

*specifically, it only allows aliasing when the pointers are read-only

Ve ru S Verus: Verifying Rust Programs using Linear Ghost Types

ANDREA LATTUADA®, VMware Research, Switzerland

TRAVIS HANCE, Carnegie Mellon University, USA

CHANHEE CHO, Carnegie Mellon University, USA

MATTHIAS BRUN, ETH Zurich, Switzerland

ISITHA SUBASINGHET, UNSW Sydney, Australia

Yl ZHOU, Carnegie Mellon University, USA

JON HOWELL, VMware Research, USA

BRYAN PARNO, Carnegie Mellon University, USA

CHRIS HAWBLITZEL, Microsoft Research, USA OOPSLA 2023

fn update_array(a: &mut [u8], b: &[u8])
requires a.len() > 0 && b.len() > 0

alo]
b[O]

35
3; €¢—— error[E0596]: cannot borrow xb as mutable, as it is behind a & reference

This is a Rust compiler error—no SMT query required!

https://play.verus-lang.org

https://play.verus-lang.org

Verified real-world systems

The software reliability landscape

Impact of bugs Software kind
A

Frustration

Loss of time Ordinary + PC software
Frequent upgrades

The software reliability landscape

Impact of bugs Software kind
A

Loss of money

Bad PR Sensitive T
Getting sued

Data Network
security security

Frustration

Loss of time Ordinary + PC software
Frequent upgrades

The software reliability landscape

Impact of bugs

Someone dies
All of the below

Loss of money

Bad PR
Getting sued

Frustration

Loss of time
Frequent upgrades

Software kind
A
Critical + Railways Medical
.. Data Network
Sensitive . .
security security
Ordinary + PC software

Nuclear
plants

Airplanes

Verified compilers

» Every program goes through the P By
compiler!

, o CORRECTNESS OF A COMPILER
 Miscompilation bugs are rare but EOR ARITHMETIC EXPRESSIONS’

very costly

1. Introduction. This paper contains a proof of the correctness of a simple
compiling algorithm for compiling arithmetic expressions into machine
: . : : language.

o C()mp| ler verification iIs not new The definition of correctness, the formalism used to express the descrip-
tion of source language, object language and compiler, and the methods
of proof are all intended to serve as prototypes for the more complicated
task of proving the correctness of usable compilers. The ultimate goal,
as outlined in references [1], [2], [3] and [4] is to make it possible to use
a computer to check proofs that compilers are correct.

Mathematical Aspects of Computer Science, 1967

Verified compilers: CompCert

Formal Verification
of a Realistic Compiler

By Xavier L
y Xavier Leroy CACM 2004

 Formally verified compiler for C, targeting ARM, x86, RISC-V, ...
* |Includes complex compiler optimizations

e 50,000 lines in the Coqg proof assistant

Verified compilers: CompCert

Theorem (Semantic preservation)

For all source code S,

if the compiler generates machine code C from source S without reporting
any compilation error,

then C behaves like S.

 “Behaves like” requires mechanized semantics for C and assembly

Verified compilers: CompCert

ide-eff t liminati
[Compcert CW side-effects out{ C|Ight)/pe.elm.lr.w |$>n C#minor]

of expressions loop simplifications

Optimizations: constant prop., CSE, tail calls, (LCM) stack allocation

Q of variables
Y

° Many Optimizati0n/|0wering passes [— CFG construction (lenorSel} instruction (lenorj

expr. decomp. selection
register allocation (Instruction scheduling)
* Easier to verity many small | AN P Sastangos)
transformations (o o T o inear
of the CFG) calling conventions
layout of

stack frames

asm code (1
[Asm } . Mach]
generation k

Verified compilers: CompCert

e SOome passes (e.g., register allocation) are just too hard to prove

o Solution: translation validation

Verified transformation

transformation

_’

e

Verified translation validation

transformation

L

-

validator

Verified compilers: CompCert

e Used in industry!

Tum

mtu

AIRBUS

i DLR

Who uses CompCert?

The Institute of Flight System Dynamics at the Technical University of Munich uses CompCert in the development of flight
control and navigation algorithms.

In 2017, CompCert was successfully qualified by MTU Friedrichshafen according to IEC 60880, category A, and

IEC 61508-3:2010, SCL 3 for a certification project in the nuclear energy domain. The use of CompCert reduced
development time and costs.

Airbus France is deploying CompCert at the Toulouse plant in a number of currently undisclosed projects.

In the civil-aviation research project QSMA by the German Federal Ministry for Economic Affairs and Energy, CompCert is
being used to develop a TSO-C151b Terrain Avoidance and Warning System in accordance with DAL-C. The project is
carried out by emmtrix, the German Aerospace Center DLR, Validas, TU Clausthal, and Absint.

selL4

Security. Performance. Proof.

 Formally verified operating system microkernel
* Proved using Isabelle/HOL, an interactive theorem prover

* Properties:
* Integrity: data is only changed as requested

» Confidentiality: data can only be read with appropriate permission

selL4

Security. Performance. Proof.

Today, sel 4 is part of an ecosystem supporting active use in various
domains including automotive, aviation, infrastructure, medical, and
defence. A key highlight demonstrating its fit for real-world deployment
was in the DARPA-funded HACMS program, where selL4 was used to
protect an autonomous helicopter against cyber-attacks.

IronFleet: Proving Practical Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill

Microsoft Research SOSP 2015

* Distributed systems are very difficult to design and implement:
 Protocols must handle concurrent execution on separate machines
 Implementation concerns can break protocol assumptions

 Hard to uncover race conditions with simple testing

e (Can verification help?

IronFleet: Proving Practical Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill
Microsoft Research SOSP 2015

Implementations are correct,

not just abstract protocols

“We show how to build complex \efficient
> distributed systems whose implementations
roofs are

machine- are provably safe and live.”
checked
In Dafny

The system does not crash The system will make progress

or otherwise go wrong given sufficient time
(no livelock or deadlock)

IronFleet: Proving Practical Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill
Microsoft Research SOSP 2015

 Methodology:
o Specify the whole protocol as a global state machine
 Prove that individual role specs obey the global state machine

 Prove that role implementations obey their specifications

refinement (§3.3) 1 1
[Distributed protocol (§3.2)] PQ?@E@
A

'reﬁnement (§3.5 . . |
[Implementation (§3.4) ﬁ ﬁFﬂQ@

Figure 3. Verification Overview.

\ -

* Allimplemented in Dafny [High-level spec (§3.1) J [HO}?[HIHHZMHB}?E—I;J
[7

IronFleet: Proving Practical Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill

Microsoft Research SOSP 2015

lronRSL
Replicated state library

IronKV

Sharded key-value store

e ~50,000 lines of Dafny, 3.7 person-years of work

 Performance competitive with unverified versions!

Cryptography

* Cryptography is complicated

) https://www.chase.com/

* Cryptography needs to be fast - : N
: \ Crypto
(<1 cycle per byte for modern encryption) - Drovider

 Combination of C and hand-optimized
assembly

 Bugs in cryptography libraries are
extremely bad!

Cryptography: EverCrypt

EverCrypt: A Modern

Verified Crypto
Provider

A Modern API

-
fa

EverCrypt: A Fast, Verified,
Cross-Platform Cryptographic Provider

Jonathan Protzenko*, Bryan Parnot, Aymeric Fromherz*, Chris Hawblitzel*, Marina Polubelova', Karthikeyan Bha:rgavan’r

Benjamin Beurdouche’, Joonwon Choi*$, Antoine Delignat-Lavaud*, Cédric Fournet*, Natalia Kulatovaf,
Tahina Ramananandro*, Aseem Rastogi*, Nikhil Swamy*, Christoph M. Wintersteiger*, Santiago Zanella-Beguelin*

*Microsoft Research 1Carnegie Mellon University TInria SMIT
S&P 2020

Symmetric-key ciphers (AES, Chacha-Poly)
Hashes (SHA, Blake?)

MACs (HMAC, Poly1305)

KDFs (HKDF)

Elliptic curves (curve25519, ed25519, p256)

Cryptography: EverCrypt

124K lines of verified code and proofs in F*

* (Sometimes) faster than unverified code!

CyLab Carnegi ellon ey Mozilla Security Blog
!:rovably'sec‘.'re co.de Performance Improvements
incorporated into Linux kernel via Formally-Verified

Cryptog raphy in Firefox

nnn

Simple High-Level Code For Cryptographic

C ry ptO g ra p h y: F i at Arithmetic — With Proofs, Without Compromises

Andres Erbsen Jade Philipoom Jason Gross Robert Sloan Adam Chlipala
MIT CSAIL,
Cambridge, MA, USA
{andreser, jadep, jgross}@mit.edu, rob.sloan@Ralum.mit.edu, adamc@csail.mit.edu

S&P 2019

* Elliptic-curve crypto depends on arithmetic over finite fields
e Simple in math, gnarly in code!

e |dea: automatically search for programs to implement finite-field
arithmetic, along with a proof of correctness

* Relies on automatic proof search and type theory of Coqg

Automated cryptocode generator is helping
secure the web

System automatically writes optimized algorithms to encrypt data in
Google Chrome browsers and web applications.

Rob Matheson | MIT News Office
June 17, 2019

Takeaways

* V\erification can be practical!

 Automated and manual tools can scale up to “production-grade” systems

* A lot of work remains to make verification commonplace

Formal Verification Verified Crypto

* 1 . Provider - | CyLab s,
of a Realistic Compiler

By Xavier Leroy

Provably-secure code
incorporated into Linux kernel

| Q&

SSSSSSSS

Security. Performance. Proof. Performance Improvements
via Formally-Verified

Cryptography in Firefox

Paxos ‘ |
IronkSE. H‘@@ = Automated cryptocode generator is helping
Replicated state library < \
& = secure the web

System automatically writes optimized algorithms to encrypt data in
Google Chrome browsers and web applications.
IronKV Q Rob Matheson | MIT News Office
Sharded key-value store

O June 17, 2019

g

