
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Bounded Model Checking

Ruben Martins

Carnegie Mellon University
Lecture 20

Tuesday, April 2, 2024

1 Introduction

In the previous lecture, we have seen that we can use SMT to show the equivalence
between two programs. In this lecture, we will show how we can use SAT solvers to
either verify that some program is correct or find a counterexample that shows inputs
to the program that may trigger some bug. One approach that can leverage SAT tech-
nology is through bounded model checking. There are several challenges when trying to
verify programs, foremost among them the fact state-space of programs may be infi-
nite. Bounded model checking computes an underapproximation of the reachable state-
space by assuming a fixed computation depth in advance, and treating paths within
this depth limit symbolically to explore all possible states. While this approach has its
limitations, it can be effectively used in practice and it is a useful technique to have in
our collection of verification techniques.

Learning Goals

• Bounded Model Checking (BMC) considers an underapproximation of all pos-
sible traces of a program.

• BMC handles loops by unrolling them with a predefined depth. If the loop is
completely unrolled then it is possible to prove verification conditions. Other-
wise, BMC is more useful as a bug catching procedure.

• Counterexamples given by BMC can be helpful for programmers to fix potential
bugs.

http://www.cs.cmu.edu/~15414/


L20.2 Bounded Model Checking

• Programs can be encoded into propositional logic by unrolling loops and using
SSA to guarantee that each variable is only assigned once.

• CBMC is a powerful BMC tool for C programs that can handle arbitrary C pro-
grams.

2 Bounded Model Checking

Bounded model checking considers an underapproximation of all possible traces of a
program. In particular, not all possible traces will appear in the approximation, but all
those that do appear are certain to be in the true trace semantics. In principle Bounded
Model Checking (BMC) can be used to verify arbitrary properties, but it is most com-
monly used to check reachability invariants of the form □terminated → P , and we will
focus on this case for the remainder of these lecture notes.

2.1 Trace Semantics

Let first formalize the notion of trace semantics of a program.

Definition 1 (Trace semantics of programs). The trace semantics, τ(α), of a program α, is
the set of all its possible traces and is defined inductively as follows:

1. τ(x := e) = {(ω, ν) : ν = ω except that ν(x) = ω[[e]] for ω ∈ S}

2. τ(?Q) = {(ω) : ω |= Q} ∪ {(ω,Λ) : ω ̸|= Q}

3. τ(if(Q)α elseβ) = {σ ∈ τ(α) : σ0 |= Q} ∪ {σ ∈ τ(β) : σ0 ̸|= Q}

4. τ(α;β) = {σ ◦ ς : σ ∈ τ(α) , ς ∈ τ(β)};
the composition of σ = (σ0, σ1, σ2, . . . ) and ς = (ς0, ς1, ς2, . . . ) is

σ ◦ ς :=


(σ0, . . . , σn, ς1, ς2, . . . ) if σ terminates in σn and σn = ς0

σ if σ does not terminate
not defined otherwise

5. τ(while(Q)α) ={σ(0) ◦σ(1) ◦ · · · ◦σ(n) : for some n ≥ 0 such that for all 0 ≤ i < n:
1⃝ the loop condition is true σ

(i)
0 |= Q and 2⃝ σ(i) ∈ [[α]] and 3⃝ σ(n) either does not

terminate or it terminates in σ
(n)
m and σ

(n)
m ̸|= Q in the end

}
∪ {σ(0) ◦ σ(1) ◦ σ(2) ◦ . . . : for all i ∈ N: 1⃝ σ

(i)
0 |= Q and 2⃝ σ(i) ∈ [[α]]}

∪ {(ω) : ω ̸|= Q}
That is, the loop either runs a nonzero finite number of times with the last iteration
either terminating or running forever, or the loop itself repeats infinitely often and
never stops, or the loop does not even run a single time.

6. τ(α∗) =
⋃

n∈N τ(αn) where αn+1 def≡ (αn;α) for n ≥ 1, and α1 def≡ α and α0 def≡ (?true).

15-414 LECTURE NOTES RUBEN MARTINS



Bounded Model Checking L20.3

2.2 Underapproximation of Trace Semantics

BMC computes an underapproximation of τ(α) by assuming that all loops in the program
are unrolled to some fixed, pre-determined finite depth k. There are two useful ways to
think about this operation. The first, which might have occurred to you naturally be-
fore having taken this course, is to transform the original program, which may contain
loops, into a loop-free program using the bound k. Consider the following [unwind]
axiom, which allows us to replace a loop with a conditional statement, within which is
a copy of the original loop.

([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

Axiom [unwind] tells us that it is perfectly acceptable when reasoning about a safety
property to replace while statements with if statements in this way. To perform bounded
model checking, we first apply [unwind] to each loop in the program up to k times.
When we are finished, we replace any remaining loops with skip statements (or equiv-
alently, ?Q).

Let’s see an example. Consider the following program, which doesn’t do anything
useful but is simple enough to illustrate the key ideas here.

1 i <- N;

2 while (0 <= x < N) {

3 i <- i - 1;

4 x <- x + 1;

5 }

Suppose that we want to check that □terminated → 0 ≤ i holds, up to a bound of k =
2. We begin by applying [unwind] twice to the loop. When we stop, we replace the
remaining loop with an empty statement.

1 i <- N;

2 if(0 <= x < N) {

3 i <- i - 1;

4 x <- x + 1;

5 if(0 <= x < N) {

6 i <- i - 1;

7 x <- x + 1;

8 }

9 }

With all of the loops removed from the program, verification is straightforward using
the deductive techniques covered earlier in the semester: the formula we need to prove
is just [α]0 ≤ i. In particular, we can apply [if], [;], and [←] repeatedly until we are left
with a term containing no modalities and literals involving only integer operations. In
the current example, we have the following after applying the necessary steps.

(¬(0 ≤ x < N)→ 0 ≤ N)
∧ (0 ≤ x < N → ¬(0 ≤ x+ 1 < N)→ 0 ≤ N − 1)
∧ (0 ≤ x < N → 0 ≤ x+ 1 < N → 0 ≤ N − 2)

15-414 LECTURE NOTES RUBEN MARTINS



L20.4 Bounded Model Checking

If this formula is valid (which it is not), then the original property holds. Notice that
there are three clauses in this formula, one for each possible path through the program
after unwinding at k = 2. What bounded model checking essentially does is to “sym-
bolically” evaluate each path through the program up to the unwinding depth. Each
path corresponds to a conjunctive clause so that if the formula is not valid, there will be
a clause that the model checker can identify as being at fault. The corresponding path
gives a counterexample and a satisfying solution to its negation a valuation of the input
variables that will violate the property.

In the example above, we see that the first clause is already invalid. We negate it to
look for a satisfying solution:

¬(¬(0 ≤ x < N)→ 0 ≤ N)↔ (¬(0 ≤ x < N) ∧ ¬(0 ≤ N))

A satisfying solution to the above is x = 0, N = −1. Notice that if we run the original
program starting in a state that matches this assignment, then it terminates immediately
without executing the loop, leaving i = −1.

Limitations Because bounded model checking is an underapproximation, it might
not consider some traces that are in the trace semantics of the program. This means
that if it does not find a property violation, we cannot necessarily conclude that the
program is bug-free. However, in some cases, we can. Consider the following variation
of the above example.

1 i <- 3;

2 while (0 <= x < 3) {

3 i <- i - 1;

4 x <- x + 1;

5 }

While a bound of k = 2 is insufficient to conclude that there are no bugs in this pro-
gram, setting k = 3 is in fact sufficient. Furthermore, we can modify the unwinding
process slightly so that if no bugs are found up to a particular depth, and we’ve chosen
a sufficiently large enough k, we will conclude as much. Likewise, if no bugs are found
but we chose an inadequately large k, we’ll know that to be the case as well.

The approach uses what are called unwinding assertions. Whereas before when we
finished applying [unwind], we replaced the remaining loop with an empty statement,
now we will replace it with a statement that violates safety if the unwinding is insuffi-
cient. In the above example, we would have the following for k = 2.

1 i <- 3;

2 if(0 <= x < 3) {

3 i <- i - 1;

4 x <- x + 1;

5 if(0 <= x < 3) {

6 i <- i - 1;

7 x <- x + 1;

8 assert (0 > x || x >= 3); // conditional negation

9 }

10 }

15-414 LECTURE NOTES RUBEN MARTINS



Bounded Model Checking L20.5

Although we haven’t talked about assertions before, we can model them using existing
constructs and safety properties. To check that an assertion isn’t violated, we replace
the assert statement with a corresponding conditional, which makes an assignment to
a special variable whenever its condition is true.

1 error <- 0;

2 i <- 3;

3 if(0 <= x < 3) {

4 i <- i - 1;

5 x <- x + 1;

6 if(0 <= x < 3) {

7 i <- i - 1;

8 x <- x + 1;

9 if(0 <= x < 3) error <- 1;

10 }

11 }

We can then check the validity of the formula [α]error = 0. In this case, the formula
would be invalid, because x is at most 2 on the path containing the assert. This means
that the unwinding assertion fails to hold, and so we should not conclude that the
program is bug-free by unwinding up to k = 2.

3 From Program to Propositional Logic

In the previous section, we have seen the intuition behind extraction a formula from
a program. In practice, these formulas are converted into satisfiability problems and
given to a decision procedure. Consider the following program that computes the ab-
solute number. For simplicity, assume that our integers can only take values {−1, 0, 1}.

1 int a;

2 int b;

3 if (a < 0) b = -a;

4 else b = a;

5 assert (b >= 0 && (b == a || b == -a));

To encode this program to propositional logic, we need to encode integers into propo-
sitional logic. For this example, we will use a unary encoding where each possible
integer value for each variable will be represented by a Boolean variable:

• a = {a−1, a0, a1}, where ai = i iff a = i with −1 ≤ i ≤ 1

• b = {b−1, b0, b1}, where bi = i iff b = i with −1 ≤ i ≤ 1

Since exactly one (EO) variable ai and bi can have assigned to true, we must encode
this property into CNF as follows.

• EO(a−1, a0, a1): (a−1 ∨ a0 ∨ a1) ∧ (¬a−1 ∨ ¬a0) ∧ (¬a−1 ∨ ¬a1) ∧ (¬a0 ∨ ¬a1)

• EO(b−1, b0, b1): (b−1 ∨ b0 ∨ b1) ∧ (¬b−1 ∨ ¬b0) ∧ (¬b−1 ∨ ¬b1) ∧ (¬b0 ∨ ¬b1)

Now we need to encode the operations that involve these integer variables, in partic-
ular:

15-414 LECTURE NOTES RUBEN MARTINS



L20.6 Bounded Model Checking

• if (a < 0) b = -a: (¬a−1 ∨ b1)

• if (a >= 0) b = a: (¬a0 ∨ b0) ∧ (¬a1 ∨ b1)

Finally, in order to prove the assert statement, we must negate it and show that the
resulting propositional logic formula is valid, i.e. that the formula is unsatisfiable. For
simplicity, let’s suppose that we want to prove that b is always larger than 0 at the end
of the procedure. To ensure that this is the case, we just need to add the unit clause
(b−1) to the formula and show that the resulting formula is unsatisfiable. In the end,
we would have formula φ that would encode the semantics of this program as:

φ =(a−1 ∨ a0 ∨ a1) ∧ (¬a−1 ∨ ¬a0) ∧ (¬a−1 ∨ ¬a1) ∧ (¬a0 ∨ ¬a1)∧
(b−1 ∨ b0 ∨ b1) ∧ (¬b−1 ∨ ¬b0) ∧ (¬b−1 ∨ ¬b1) ∧ (¬b0 ∨ ¬b1)∧
(¬a−1 ∨ b1) ∧ (¬a0 ∨ b0) ∧ (¬a1 ∨ b1)∧
(b−1)

Even though this is a very simple example, it gives the intuition on how to transform
a program to propositional logic. Two main challenges when performing these trans-
formations are loops and variables that are assigned more than once. Loops can be
transformed into a straight-line program with the unrolling technique described previ-
ously. For variable assignment, we can introduce fresh variables to guarantee that each
variable is assigned exactly once. This transformation is called static single assignment
(SSA). We will not go over the details of SSA in this lecture but if you are interested in
knowing more we refer you to the lecture notes of the “15-411 Compiler Design“.

4 Bounded Model Checking in Practice

Several tools implement efficient BMC procedures and that can be used in practice. One
of the most known BMC tools is CBMC, which performs bounded model checking for
C code and it is available at https://www.cprover.org/cbmc/.

4.1 Getting started

We will show some examples of using CBMC to prove verification conditions or to
find a counterexample when the program is buggy. These examples are available at
https://www.cs.cmu.edu/~15414/lectures/20-bmc/cbmc-example.c.

1 void f00 (int8_t x, int8_t y, int8_t z) {

2 if (x < y) {

3 int8_t firstSum = x + z;

4 int8_t secondSum = y + z;

5 assert(firstSum < secondSum);

6 }

7 }

CBMC can be run on the program f00 with the following command line:

15-414 LECTURE NOTES RUBEN MARTINS

https://www.cprover.org/cbmc/
https://www.cs.cmu.edu/~15414/lectures/20-bmc/cbmc-example.c


Bounded Model Checking L20.7

$ cbmc --drop-unused-functions --function f00 cbmc-example.c

And will be able to detect a potential arithmetic overflow when summing x and z.
You can ask CBMC for a trace that corresponds to the counterexample and that will as-
sign values to x and z that will trigger the arithmetic overflow by running the following
command line:

$ cbmc --drop-unused-functions --function f00 cbmc-example.c --trace

To fix this issue, one can change the type of firstSum and secondSum to have a larger
bit width, e.g. changing it to a 16 bit integers (int16 t).

When handling for loops, CBMC is able to determine how much the loop needs to
be unroll to fully replace the loop of the program equivalent straight-line code. How-
ever, for programs with while loops, CBMC is unable to determine the necessary unroll
depth. Consider the following program:

1 void f03 (int x, int i) {

2 if (i >= 0 && i < 10) {

3 if (x > 0) {

4 while (i < 10) {

5 x += i;

6 ++i;

7 }

8 }

9 } else {

10 x = 42;

11 }

12 assert(x != 1);

13 }

The user must specify how many times the loop must be unrolled. This can be
achieved with the option --unwind n. To check if the loop was completely unrolled,
the user can additionally use the option --unwinding-assertions. For instance, the
command:

$ cbmc --drop-unused-functions cbmc-example.c --unwind 10 --function f03

--unwinding-assertions

This would show that the unwinding assertion will be triggered since the loop must
be unrolled 11 times.

CBMC uses a SAT solver by default but it can also use Satisfiability Modulo Theory
(SMT) solvers instead. In the next lecture, we will introduce SMT and talk about de-
cision procedures to solve a combination of theories. However, we show an example
here that illustrates some differences when handling multiplication.

1 void f14 (int16_t x, int16_t y) {

2 int16_t a = x;

3 int16_t b = y;

4 assert(a*b == x*y);

5 }

15-414 LECTURE NOTES RUBEN MARTINS



L20.8 Bounded Model Checking

SAT encodings of multipliers are not very efficient. When considering this program,
it takes more than 10 minutes to solve this verification problem on a common laptop
when invoking CBMC with a SAT solver:

$ cbmc --drop-unused-functions cbmc-example.c --function f14

However, if CBMC is called using the SMT solver Z3 (with the option -z3) then it
takes less than 1 second for any bit-width since Z3 uses equivalence reasoning and
reduces the problem to a× b = a× b.

4.2 Useful command line options

CBMC has a lot of command line options, but here we list some common options.

• --function name set main function name to be analyzed.

• --trace give a counterexample trace for failed properties. This option is helpful
to trace the bug which will give you insights on how to fix it.

• --bounds-check enable array bounds checks. This option implicitly creates assert
statements to ensure correct array bounds.

• --pointer-check enable pointer checks. This option implicitly creates assert
statements to ensure correct pointer access.

• --signed-overflow-check enable signed arithmetic over- and underflow checks.
This option implicitly creates assert statements to ensure that there will not be
signed overflows.

• --drop-unused-functions drop functions trivially unreachable from main func-
tion which makes it easier to read the output.

• --unwind nr unwind nr times. Each loop is unwind nr times.

• --slice-formula remove assignments unrelated to property which makes veri-
fication faster.

• --unwinding-assertions generate unwinding assertions.

• --z3 use Z3 to solve the formula instead of a SAT solver.

15-414 LECTURE NOTES RUBEN MARTINS


	Introduction
	Bounded Model Checking
	Trace Semantics
	Underapproximation of Trace Semantics

	From Program to Propositional Logic
	Bounded Model Checking in Practice
	Getting started
	Useful command line options


