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1 Introduction

In the previous lecture we studied decision procedures for two first-order theories: ar-
rays and equality with uninterpreted functions (EUF). Both procedures assumed that
the formula to be decided was in the conjunctive, quantifier-free fragment of either the-
ory, which means that the procedures are unable to handle a formula with a disjunction,
or a negation over other logical connectives.

In this lecture, we will see how to decide formulas with arbitrary logical structure
(i.e., they need not be in a conjunctive fragment), in any first-order theory for which we
have a decision procedure capable of handling conjunctive, quantifier-free formulas. In
particular, we will show how we can solve formulas that combine multiple theories by
using the Nelson-Oppen combination method and the DPLL(T) framework. !

Learning Goals

1. The Nelson-Oppen procedure extends the approach to combinations of theories,
but they must be stably infinite, and in some cases convex.

2. DPLL(T) combines a conjunctive theory solver and DPLL to decide formulas in a
given first-order theory. The first step is to over-approximate a formula using its
Boolean abstraction.

Lecture notes based on [BM07] and [KS16a].
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2 Review: First-Order Theories
A first-order theory 7' is defined by the following components.

* It's signature ¥ is a set of constant, function, and predicate symbols.

* It's set of axioms A is a set of closed first-order logic formulae in which only
constant, function, and predicate symbols of ¥ appear.

Definition 1 (7-valid). A ¥-formula ¢ is valid in the theory T' (T-valid), if every inter-
pretation I that satisfies the axioms of T' (i.e., I |= A forevery A € A) also satisfies ¢
(ie., I = o).

Definition 2 (T-satisfiable). Let T be a ¥-theory. A ¥-formula ¢ is T-satisfiable if there
exists an interpretation I such that I = Aand I = ¢.

Definition 3 (T-decidable). A theory T is decidable if T' |= ¢ is decidable for every
Y-formula. That is, there exists an algorithm that always terminate with “yes” if ¢ is
T-valid or with “no” if ¢ is T-invalid.
2.1 Example of Theories
Some theories that we will use throughout this lecture are:

¢ The theory of equality with uninterpreted functions (7g).

¢ The theory of reals (T).

The theory of equality with uninterpreted functions 7 is the simplest first-order
theory. It’s signature

Ye:{=,a,b,c,....f,9,h,....0,q,1,...}
consists of
* = (equality), a binary predicate;
¢ and all constant, function and predicate symbols.

The axioms of T¢ are the following:

1. Ve.x =z (reflexivity)
2. Ve,yx =y —>y==x (symmetry)
3. Ve,y,zx=yAy=2z—>x==2 (transitivity)
497, 5Ny 71 = i) = £(2) = £(7) (congruence)
5. VZ,y.(N\i_i i = vi) — (p(T) <> p()) (equivalence)
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The theory of reals TR has signature

ER : {O, 17 +, Ty T 2}

where

0 and 1 are constants;

+ (addition) and - (multiplication) are binary functions;
* - (negation) is a unary function;
¢ and = (equality) and > (weak inequality) are binary predicates.

TRk has a complex axiomatization and we will not describe all its axioms here since
they are not essential to the understanding of the Nelson-Oppen procedure and the
DPLL(T) framework. We refer the inthterested student to [BM07] for a detailed reading
on the axiomatization of the theory of reals.

3 Theory combination

Definition 4 (Theory combination). Given two theories 77 and 75 with signatures 3¢
and Xy, respectively, the theory combination 77 & T3 is a (X7 U X3)-theory defined by
the axiom set 17 U T5.

Definition 5 (The theory combination problem). Let ¢ be a ¥; U3, formula. The theory
combination problem is to decide whether ¢ is T} ® T-valid. Equivalently, the problem
is to decide whether the following holds: 71 & T3 = .

Given a X-formula ¢ in 7 and a X-formula v in T can we check the satisfiability of
U1 by checking the satisfiability of ¢ and 1 independently and combining the results?
No! This is not a sound procedure for the theory combination problem. Consider the
following counterexample:

o= f(x) # f(y)
Yv=2x4+y=0Ax=0

Both ¢ and ¢ are satisfiable but ¢ implies that © # y and ¢ implies that z = v,
therefore their combination is not satisfiable!

4 The Nelson-Oppen Combination Procedure

The Nelson-Oppen combination procedure solves the theory combination problem for
theories 77 and 75 that comply with the following restrictions:

* Both theories 7 and 75 are quantifier-free (conjunctive) fragments.
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¢ Equality (=) is the only symbol in the intersection of their signatures, i.e., £1N¥y =
=}

¢ Both theories are stably infinite.

Definition 6 (Stably infinite). A theory 7" with signature X is stably infinite if, for ev-
ery satisfiable ¥p-formula ¢, there is an interpretation that satisfies ¢ and that has a
universe of infinite cardinality

Consider the theory T, ;, with signature X1 : {a,b, =} where both a and b are con-
stants and with the following axiom:

e Vexx=aVxr=> (two)

Because of axiom (two), every interpretation I is such that the domain of I has at
most two elements. Therefore, T, is not stably infinite. Note that most of the the-
ories of interest for program verification are stably infinite, e.g. theory of equality of
uninterpreted functions and theory of integers.

The Nelson-Oppen procedure for a formula ¢ that combines different theories con-
sists of:

1. Purification: Purify ¢ into F1,..., F,.

2. Apply the decision procedure for T; to F;. If there exists ¢ such that F; is unsatis-
fiable in T;, then ¢ is unsatisfiable.

3. Equality propagation: If there exists ¢, j such that F; T;-implies an equality be-
tween variables of ¢ that is not Tj-implied by F};, add this equality to F; and go
to step 2.

4. If all equalities have been propagated then the formula is satisfiable.

4.1 Purification and equality propagation

Purification is a satisfiability-preserving transformation of the formula, after which
each atom is from a specific theory. In this case, we say that all the atoms are pure.
More specifically, given a formula ¢, purification generates an equisatisfiable formula
¢’ as follows:

1. Let ¢’ := ¢.

2. For each “alien” subexpression ¢ in ¢':
¢ Replace ¢ with a new auxiliary variable a4

* Constraint ¢’ with ay = ¢.
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Consider the following formula:

o= flzr+g(y) <gla)+ f(b)

This formula combines the theories 7 and 7. Below we show the purification of ¢
into ¢’ defined over Ty and ¢” defined over Tg

Purification
¢ (Tr) ©" (Tg)
ug = +wA | up = g(y)A

us <ug +uz | ug = gla)A
us = f(b)/\
us = f(us)

Observe that ¢’ only contains atoms from 7 and ¢” only contains atoms from Tg.
A variable is shared if it occurs in both formulas and local otherwise. For example,
{u1, u2,us3, uq, us } are shared variables since they appear in both ¢’ and ¢” and variables
{z,y,a,b} are local to either ¢’ ({z}) or ¢" ({y, a, b}).

Consider another formula:

¢=f(fle)=fW) #f()Ne<yAy+z<zA0<z

We will show how to determine the satisfiability of ¢ with the Nelson-Oppen proce-
dure. We start by doing purification and then perform equality propagation over the
shared variables.

Purification

¢’ (Ir) ¢" (Tk)

v<yn | F@w) £ (A

y+z<zA u= f(x)A

0 < 2zA v=f(y)

w=u—"0

Equality propagation

T = yA T = yA

u = VA U = VA

w=z w = zA
unsat

Observe that < y, y + 2 < z and 0 < z implies that x = y and z = 0. Therefore,
we add z = y to both formulas. Since x = y this implies that f(z) = f(y) and therefore
u = v. Since u = v and w = u — v than this implies that w = 0 which means that
w = z. However, if w = z than f(w) = f(z) but ¢’ contains f(w) # f(z). Hence, ¢ is
unsatisfiable.
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4.2 Convex theories

The Nelson-Oppen procedure described in the previous section is only valid for convex
theories. Note that this procedure can be modified to handle non-convex theories but
for simplification purposes, we omit that version.

Definition 7 (Convex theory). A X-theory T is convex if for every conjunctive X-formula

©:
n
(p — \/ x; = y;) is T-valid for some finite n > 1 —
i=1
(¢ — z; = y;) is T-valid for somei € {1,--- ,n}
where z;,y;, fori € {1,--- ,n}, are some variables.

In other words, in a convex theory 7', if a formula T-implies a disjunction of equali-
ties, it also T-implies at least one of these equalities separately.
An example of a nonconvex theory is the theory of integers (17). For instance, while

a:l:1/\x2:2/\1§a:3/\x3§2—>(a?3:a:1Vx3:xg)

holds, neither

T1=1AN20=2AN1<23N23<2—=>23=121
nor

T1=1AN2o=2AN1<23N23<2—23=29
holds.

Consider the following formula defined over the theory of integers (17) and the the-
ory of uninterpreted functions with equality (7g):

p=1<are<2Af(x)# f()Af(x)# f(2)

We can see that this formula is unsatisfiable since z is either 1 or 2 but f(x) #
1 A f(z) # 2 which means that z has to be different than 1 and 2. However, if we ap-
ply the Nelson-Oppen procedure described in the previous section we will incorrectly
conclude that ¢ is satisfiable:

Purification
¢ (Tz) ¢" (Tg)
L<an | f(z)# f(z)
x <2A | f(x) # f(w)

z=1
w=2
Equality propagation
sat | sat
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In practice, SMT solvers use an extended version of Nelson-Oppen that propagates
implied disjunctions of equalities [KS16b, Chapter 10]. The details of this extension
are beyond the scope of the lecture, but note that adding additional disjunctions to a
formula will force algorithms like DPLL(T’) to solve them by case-splitting, which can
quickly become expensive. So, while it is possible to combine non-convex theories with
others, one should be aware that doing so may make the solver’s job intractible, and
explore other options.

5 DPLL(T) framework

The Nelson-Oppen procedure allows us to solve conjunctive first-order theories. To
handle disjunction, we could convert the formula to Disjunctive Normal Form (DNF).
However, this conversion is usually too expensive and is not the most efficient way of
solving disjunctive first-order theories. One of the strengths of the DPLL algorithm is
its ability to handle disjunctions efficiently via unit propagation and clause-learning.
We will now see how DPLL can be extended to account for first-order theories via the
DPLL(T') framework. This approach is used in almost all modern SMT solvers.

The key idea behind this framework is to decompose the SMT problem into parts we
can deal with efficiently:

¢ Use SAT solver to cope with the Boolean structure of the formula;
¢ Use dedicated conjunctive theory solver to decide satisfiability in the background

theory.

5.1 Boolean abstraction

We define the Boolean abstraction of a ¥-formula ¢ recursively:

e <literal> = <atom>7 | = <atom>p

o <formula> ::= <literal> B (lT)d:efPi, where P; is a fresh variable
e <formula> ::= - <formula> B (ﬂF)d:Qf—'B(F)
e <formula> = <formula> A <formula> B (F1 A Fg)d:efB(Fl) N B(F3)
o <formula> ::= <formula> VvV <formula> B(F1V Fg)d:efB(Fl) V B(F3)
¢ <formula> := <formula>— <formula> B (Fy — Fg)d:efB(Fl) — B(F3)
e <formula> = <formula>+< <formula> B (F < Fg)d:efB(Fl) — B(F»)
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Given a X-formula ¢:

p:g(a)=cA(f(g(a)) # f(c)Vgla) =d)Nc#d

The Boolean abstraction of ¢ is the following:

B(F) = B(g(a) = c) NB(f(g(a)) # f(c) Vg(a) =d) Nc#d)
(9(a) =c) NB(f(g(a)) # f(c) Vg(a) = ) A B(c # d)
(9(a) = c) NB(f(g(a)) # f(c)) V B(g(a) = d) AB(c # d)
Py A (=PyV P3) APy

Il
N

9}

B
B

Note that we can also define B~! which maps from the Boolean variables back to
the atoms in the original formula. For example B~1(P; A P3 A Py) corresponds to the
formula g(a) = cAgla) =dANc=d.

We call B(y) an abstraction of ¢ since it is an over-approximation of ¢ with respect
to satisfiability. Observe the following properties of this over-approximation:

e If ¢ is satisfiable then B(¢) is also satisfiable;

* If B(y) is satisfiable then ¢ is not necessarily satisfiable:

prl<azAz<2Af(x) # FA) A f(x) # F2)

¢ is unsatisfiable in the theory of integers (17) since z is either 1 or 2 but f(x) #
f(1) A f(xz) # f(2) implies that z must be different than 1 and 2. However, the
Boolean abstraction B(yp) = P; A P> A P3 A\ Py is satisfiable.

e If ¢ is unsatisfiable then B(¢y) is not necessarily unsatisfiable:

pil<anz<2Af(x)# f(U) A f(@) # [(2)

The same example as for the previous case holds for this case as well. ¢ is unsat-
isfiable in the theory of integers (17) but B(y) is satisfiable.

e If B(yp) is unsatisfiable then ¢ is also unsatisfiable.

Combining theory and SAT solvers. The Boolean abstraction provides us with a lazy
way to solve SMT. In the next lecture, we will talk about the DPLL(T) algorithm in detail
and see how it can be used to determine the satisfiability of a formula that combines
multiple theories.

References

[BMO07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2007.

15-414 LECTURE NOTES RUBEN MARTINS



SMT Solving: Nelson-Oppen L18.9

[KS16a] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point
of View. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2016.

[KS16b] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point
of View. Springer Publishing Company, Incorporated, 2 edition, 2016.

15-414 LECTURE NOTES RUBEN MARTINS



	Introduction
	Review: First-Order Theories
	Example of Theories

	Theory combination
	The Nelson-Oppen Combination Procedure
	Purification and equality propagation
	Convex theories

	DPLL(T) framework
	Boolean abstraction


