
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Propositional Encodings

Ruben Martins

Carnegie Mellon University
Lecture 13

Thursday, March 14, 2024

1 Introduction

In the last lecture, we talked about resolution and the input of SAT solvers. As we
have seen, SAT solvers take as input a formula in Conjunctive Normal Form (CNF). To
tranform a formula to CNF, we can use De Morgan’s laws and distribituve law but this
may lead to an exponential blow-up as we will see in the next section. In this lecture,
we will learn how to transform any formula into CNF without having an exponential
explosion on the size of the formula.

Learning goals. After this lecture, you should be able to:

• Use the Tseitin encoding to convert any propositional formula into an equisatis-
fiable CNF formula with a linear increase in the size of formula.

• Represent finite domais using a unary or binary representation.

• Encode linear such as at-most-one constraints in CNF.

• Encode problems into CNF and use a SAT solver to solve them.

2 Tseitin Encoding

Given a propositional formula, one can use De Morgan’s laws and distributive law to
convert it to CNF. However, in some cases, converting a formula to CNF can have an
exponential explosion on the size of the formula.

http://www.cs.cmu.edu/~15414/


L13.2 Propositional Encodings

Suppose we have the following formula φ,

φ = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ . . . ∨ (xn ∧ yn)

and want to convert φ to CNF. If we apply De Morgan’s laws and distribute law then
we will obtain a formula φ′ such that:

φ′ = (x1 ∨ x2 ∨ . . . ∨ xn) ∧ (y1 ∨ x2 ∨ . . . ∨ xn) ∧ (y1 ∨ y2 ∨ . . . ∨ yn)

.
Note that φ′ has an exponential number of clauses, namely 2n clauses. Can we avoid

this exponential blowup on the size of the formula? Yes, with the Tseitin encoding we
can transform any propositional formula into an equisatisfiable CNF formula.

Definition 1 (Equisatisfiable). Two formulas φ and ϕ are equisatisfiable if φ is satisfiable
iff ϕ is satisfiable.

Note that equisatisfiability is weaker than equivalence but useful if all we want to do
is to determine the satisfiability of a formula.

The key idea behind the Tseitin Encoding is to introduce fresh variables to encode
subformulas and to encode the meaning of these fresh variables with clauses. This
procedure avoids duplicating whole subformulas and can transform a propositional
formula into CNF with a linear increase in the size of the formula.

Example 2. Consider the formula ϕ = (x∧¬y)∨(z∨(x∧¬w)). This formula can be viewed
as a tree as depicted in Figure 1. The terminal nodes denote the atoms of the formula
and the intermediate nodes denote fresh variables that encode each subformula.

Figure 1: Tree representation of a propositional formula

For each fresh variable f, a, b, c, we introduce clauses that represent their equivalence
with the respective subformula. In particular, we add the following clauses:

• f ↔ (a ∨ b) ≡ (¬f ∨ a ∨ b) ∧ (¬a ∨ f) ∧ (¬b ∨ f)

15-414 LECTURE NOTES RUBEN MARTINS



Propositional Encodings L13.3

• a ↔ (x ∧ ¬y) ≡ (¬a ∨ x) ∧ (¬a ∨ ¬y) ∧ (¬x ∨ y ∨ a)

• b ↔ (z ∨ c) ≡ (¬b ∨ z ∨ c) ∧ (¬z ∨ b) ∧ (¬c ∨ b)

• c ↔ (x ∧ ¬w) ≡ (¬a ∨ x) ∧ (¬a ∨ ¬w) ∧ (¬x ∨ w ∨ a)

Since we want the formula to hold, we additionally need to add the unit clause (f).
Note that by adding this unit clause, unit propagation would simplify the first three
clauses to (a ∨ b).

Let’s take a closer look at the previous formula φ = (x1∧y1)∨(x2∧y2)∨. . .∨(xn∧yn).
Recall that this formula would require an exponential number of clauses if we would
use De Morgan’s laws and distribute law. If instead, we use the Tseitin Encoding we
can have an equisatisfiable formula φ′′ in CNF composed by the following clauses:

• w1 ↔ (x1 ∧ y1) ≡ (¬w1 ∨ x1) ∧ (¬w1 ∨ y1) ∧ (w1 ∨ ¬x1 ∨ ¬y1)

• . . .

• wn ↔ (xn ∧ yn) ≡ (¬wn ∨ xn) ∧ (¬wn ∨ yn) ∧ (wn ∨ ¬xn ∨ ¬yn)

• (w1 ∨ w2 ∨ . . . ∨ wn)

This would result in a formula φ′′ with 3n+1 clauses and with n auxiliary variables.

3 Finite Domains

Many real-world problems require the encoding of finite domains to propositional
logic. In this section, we will present two different ways of encoding integer domains
in propositional logic by using unary and binary representations of these finite domains.
The intuition behind these representations is that an unary representation considers a
Boolean variable for each possible value, while a binary representation considers the
binary representation of an integer.

Example 3. Suppose we want to encode the domain of an integer variable X = {1, 2, 3}.

Unary representation

Consider the auxiliary variables x1, x2, x3. We want to encode the meaning that xi is
true iff X = i. To encode this property we need to encode that:

1. At least one of these variables must occur:
(x1 ∨ x2 ∨ x3)

2. At most one of these variables must occur:
(¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3)

15-414 LECTURE NOTES RUBEN MARTINS



L13.4 Propositional Encodings

Binary representation

Consider the binary representation of integers and the auxiliary variables b1, b0. We
want to encode the following property:

• If X = 1 then b0 = 0 ∧ b1 = 0

• If X = 2 then b0 = 1 ∧ b1 = 0

• If X = 3 then b0 = 0 ∧ b1 = 1

In this case, the meaning of each variable can be used to implicitly encode the possible
values of X . The only information we need to encode is possible integer values that
are not part of the domain of X . In this case, X = 4 is not part of the domain but can
be encoded using these two variables, therefore we need to disallow this value from
occurring by adding the clause (¬b0 ∨ ¬b1).

Unary vs. Binary representations

The main advantage of the binary representation is that only requires a logarithmic
number of auxiliary variables to encode the finite domain. In contrast, we need a linear
number of auxiliary variables for the unary encoding. However, when encoding prob-
lems using a binary encoding, it can be cumbersome to express constraints that relate
to different numbers since each number is represented by a conjunction of variables
instead of a single variable. Moreover, unit propagation is able to infer more informa-
tion when using a unary encoding than when using binary encoding. In practice, the
size of the domain is usually the decider between choosing one or other encoding. For
small domains, unary encoding is usually preferred while for large domains the binary
encoding is usually the best choice.

4 Linear Constraints

Linear constraints are common when encoding many real-world properties and impose
a limit on a subset of variables that can be assigned to true. The most common linear
constraint is the at-most-one constraint.

Definition 4 (At-most-one constraints). Let x1+ . . .+xn ≤ 1 be a linear constraint over
Boolean variables x1, . . . , xn. This constraint is called at-most-one and denotes that at
most one variable xi can be assigned to true.

A naive encoding for at-most-one constraints is the one that we implicitly used in the
previous sections. For each pairwise combination xi and xj with 1 ≤ i < j ≤ n, we add
the clause (¬xi ∨ ¬xj) that encodes that if xi is assigned to true then xj is assigned to
false. Similarly, it also encodes that if xj is assigned to true then xi is assigned to false.
This encoding is simple but requires a quadratic number of clauses. If n is very large,
this encoding will lead to a very large CNF formula and should be avoided.

15-414 LECTURE NOTES RUBEN MARTINS



Propositional Encodings L13.5

How can we encode linear constraints such as the at-most-one constraint using a
linear number of clauses? When encoding a problem into SAT, there is usually a trade-
off between reducing the number of clauses and increasing the number of variables. In
this case, it is possible to use auxiliary variables in order to use only a linear number of
clauses.

Sequential encoding

Consider the constraint x1 + x2 + x3 ≤ 1. Consider additionally, the auxiliary vari-
ables S1, S2 with the following meaning: Si is assigned to true iff the sum up to xi is
exactly one. Using these auxiliary variables we can now encode this kind of constraint
as follows:

• If Si is set to true then Si+1 is also set to true:
(¬S1 ∨ S2)

• If xi is set to true then Si is also set to true:
(¬x1 ∨ S1) ∧ (¬x2 ∨ S2)

• If Si is set to true then xi+1 is set to false since the sum is already 1:
(¬S1 ∨ ¬x2) ∧ (¬S2 ∨ ¬x3)

In general, this encoding will require 3n − 4 clauses which are much fewer clauses
than the naive encoding which requires a quadratic number of clauses. Note that this
reduction is achieved at the cost of n − 1 auxiliary variables. This reasoning can be
further generalized to at-most-k constraints and many CNF encodings exist for these
kinds of constraints. For the generalization of the sequential encoding to at-most-k
constraints, we refer the interested student to the literature [Sin05].

5 Encoding Graph Coloring as a SAT problem

Suppose that we want to encode the graph coloring problem to SAT, i.e. we want to ask
the question, given a graph if there exists a k-coloring such that no two nodes that are
connected have the same color. Consider for this example the graph in Figure 2.

When encoding a problem to SAT, we start by defining the meaning of the variables
that we will use in our formula. In this case, we can use an unary encoding and consider
3 variables per color for each node. Let’s denote Ay, Ab, Ar Boolean variables that are
true if A is colored yellow (y), blue (b), or red (r), respectively. Similarly, we can define
variables By, Bb, Br, Cy, Cb, Cr, Dy, Db, Dr, Ey, Eb, Er, for the remaining nodes. Given
these variables, we can now encode the problem by adding the following clauses:

• If two nodes are connected then they do not have the same color:
(¬Ay ∨ ¬Ey) ∧ (¬Ab ∨ ¬Eb) ∧ (¬Ar ∨ ¬Er)
(¬Ay ∨ ¬Cy) ∧ (¬Ab ∨ ¬Cb) ∧ (¬Ar ∨ ¬Cr)
(¬Cy ∨ ¬By) ∧ (¬Cb ∨ ¬Bb) ∧ (¬Cr ∨ ¬Br)

15-414 LECTURE NOTES RUBEN MARTINS



L13.6 Propositional Encodings

Figure 2: 3-coloring of a graph.

(¬Cy ∨ ¬Dy) ∧ (¬Cb ∨ ¬Db) ∧ (¬Cr ∨ ¬Dr)
(¬By ∨ ¬Dy) ∧ (¬Bb ∨ ¬Db) ∧ (¬Br ∨ ¬Dr)
(¬By ∨ ¬Ey) ∧ (¬Bb ∨ ¬Eb) ∧ (¬Br ∨ ¬Er)
(¬Dy ∨ ¬Ey) ∧ (¬Db ∨ ¬Eb) ∧ (¬Dr ∨ ¬Er)

• Each node has at-least-one color:
(Ay ∨Ab ∨Ar)
(By ∨Bb ∨Br)
(Cy ∨ Cb ∨ Cr)
(Dy ∨Db ∨Dr)
(Ey ∨ Eb ∨ Er)

• Each node has at-most-one color:
(¬Ay ∨ ¬Ab) ∧ (¬Ay ∨ ¬Ar) ∧ (¬Ar ∨ ¬Ab)
(¬By ∨ ¬Bb) ∧ (¬By ∨ ¬Br) ∧ (¬Br ∨ ¬Bb)
(¬Cy ∨ ¬Cb) ∧ (¬Cy ∨ ¬Cr) ∧ (¬Cr ∨ ¬Cb)
(¬Dy ∨ ¬Db) ∧ (¬Dy ∨ ¬Dr) ∧ (¬Dr ∨ ¬Db)
(¬Ey ∨ ¬Eb) ∧ (¬Ey ∨ ¬Er) ∧ (¬Er ∨ ¬Eb)

A SAT solver can solve this formula and return the interpretation I = {Ar, Bb, Cy,
Dr, Ey} (for simplicity omit the variables assigned to false from the interpretation). If
we decode this interpretation to the original problem, we obtain the coloring presented
in Figure 2.

When encoding problems into SAT, it is useful to use a framework like PySAT with
APIs that allows us to create a CNF formula, solve it with a SAT solver, and then inter-
pret the solution and map it back to our original problem. An example of using PySAT
to solve this problem was presented during the lecture and is available in color.py.

15-414 LECTURE NOTES RUBEN MARTINS

https://pysathq.github.io/
http://www.cs.cmu.edu/~15414//lectures/15-encodings/color.py


Propositional Encodings L13.7

References

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality con-
straints. In International Conference on Principles and Practice of Constraint Pro-
gramming, volume 3709, pages 827–831. Springer, 2005.

15-414 LECTURE NOTES RUBEN MARTINS


	Introduction
	Tseitin Encoding
	Finite Domains
	Linear Constraints
	Encoding Graph Coloring as a SAT problem

