
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Resolution

Ruben Martins*

Carnegie Mellon University
Lecture 14

Tuesday, March 12, 2024

1 Introduction

Before spring break, we saw the sequent calculus, which has many positive attributes.
Sequents are an excellent basis for communicating proof goals. With some refinement,
it can serve as a foundation for goal-directed proof search procedures. It is also quite
robust, which means that many logics (we have seen dynamic logic, parts of modal
logic, classical logic, and a glimpse of intuitionistic logic) have formulations in the se-
quent calculus. On the other hand, sequent proofs are quite verbose and also lose some
of their intuitive appeal if they have multiple succedents.

Many modern provers, however, are not directly based on the sequent calculus.
Broadly, we can classify those as either being based on resolution in some form or on co-
operating decision procedures, usually in the form of SMT (Satisfiability Modulo Theories)
based on SAT (Satisfiability). In today’s lecture we discuss the rudiments of resolution,
which also represents a bridge between human-oriented and machine-oriented proof
systems. It has the virtue that a resolution proof is quite easy to check, which is not
the case for proofs is carried out by a SAT or SMT solver. Therefore, SAT solvers these
days produce an independently checkable proof certificate, and SMT solvers should (al-
though implementations are not quite as far advanced). One popular format for such a
certificate is in fact a resolution proof.

In this lecture we present only the propositional case (no quantification) and only
binary resolution. There are many refinements and optimizations of resolution which
was one of the dominant methods of automated theorem proving for several decades.

*Adapted and extended from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414

L14.2 Resolution

Why3 supports many provers, including provers such as Eprover, Spass, and Vampire
that have their origins in variants of resolution but continue to evolve.

Learning goals. After this lecture, you should be able to:

• Carry out resolution proofs for propositional logic

• Construct a satisfying assignment from a consistent, saturated theory

• Convert formulas to conjunctive normal form by creating internal names

2 Satisfiability

For today’s lecture we restrict ourselves to propositional formulas. We use lowercase
p, q for atoms which you can also think of as propositional variables. Then our grammar
for propositions is:

Q,P ::= p | P ∧Q | P ∨Q | P → Q | ¬P | ⊤ | ⊥

A truth assignment M assigns either true or false to every propositional variable (or
atom, as we say). This is analogous to the state ω in dynamic logic that assigns an
integer to every variable. So, if you like, you can think of propositional theorem proving
as deciding the (quantifier-free) theory of Booleans. We write M |= P if the formula P
is true given the assignment M . This is defined exactly as we did in dynamic logic on
these connectives with one additional clause:

M |= p iff M(p) = true

A convenient way to present a truth assignment is by giving a list of p if M(p) = true
and ¬p if M(p) = false. In principle, this list would have to be infinite, but since every
formula contains only finitely many atoms we can use such a finite representation.

The fundamental question is once again that of validity, that is:

Validity: decide whether M |= P for every truth assignment M .

Since SAT solvers check for satisfiability, this is usually turned into a problem of
satisfiability:

Satisfiability: decide whether M |= P for some truth assignment M .

These problems are equivalent in the sense that

P is valid if and only if ¬P is unsatisfiable

which you can easily verify from the definitions. So instead of proving P we try to
refute ¬P by searching for an assignment M such that M |= ¬P . This is also called a
model for ¬P . If no such model exists, then ¬P is unsatisfiable which means that P is
valid. If such a model exists that ¬P is satisfiable, which means that P is not valid. In
this case the model M for ¬P provides a counterexample to the validity of P in the
sense that M ̸|= P . Read the previous paragraph at least once more. It’s crucial in
understanding what follows.

15-414 LECTURE NOTES RUBEN MARTINS1

Resolution L14.3

3 Clausal Form

There is some redundancy among the connectives of (classical) propositional logic. The-
orem proving methods are easier to think about and implement if we can put the for-
mulas into a normal form such that P is satisfiable if and only if its normal form Q is
satisfiable. Moreover, we’d like to be able to take any satisfying assignment M for Q
and translate it to a satisfying assignment for P .

One such normal form is called conjunctive normal form (CNF). A formula is in con-
junctive normal form if it is a conjunction of disjunction of atoms and negated atoms.
That is:

Literal L ::= p | ¬p
Clause D,C ::= ⊥ | L | C ∨D
Theory S, T ::= ⊤ | C | S ∧ T

For the algorithms, it is convenient to think of a clause as a set of literals {L1, . . . , Ln}
where we write ⊥ for the empty set. We will still write this as L1 ∨ . . . ∨ Ln. Similarly,
we think of a theory as a sequence of clauses, C0, C1, . . . , Ck.

There are a number of methods to put a propositional formula into an equisatisfiable
clausal form. We will see other methods in the next lecture. However, a not particularly
efficient one would first push in negations and then use the laws of distributivity, but
this could blow up the size of the formula exponentially.

In order to satisfy a formula in conjunctive normal form we have to satisfy each
conjunct. On the other hand, it is sufficient to satisfy a single literal in each clause.
If a clause is empty (representing ⊥) then it can not be satisfied by any assignment.
Consequently, a theory containing the empty clause is unsatisfiable.

As a simple running example, consider

P = (p → (q → r)) → ((p ∧ q) → r)

with atoms p, q, and r, where we have written some redundant parentheses for clarity.
As a first step, we’ll negate this, repeatedly using the laws (P → Q) ↔ (¬P ∨ Q) and
¬(P → Q) ↔ (P ∧ ¬Q).

¬P = ¬((p → (q → r)) → ((p ∧ q) → r))
↔ (p → (q → r)) ∧ ¬((p ∧ q) → r)
↔ (¬p ∨ (¬q ∨ r)) ∧ (p ∧ q) ∧ ¬r
↔ (¬p ∨ ¬q ∨ r) ∧ p ∧ q ∧ ¬r

At this point we have reached a conjunctive normal form. Written as a theory, labeling
each clause:

¬p ∨ ¬q ∨ r C0

p C1

q C2

¬r C3

It is easy to see that this theory is unsatisfiable. Since it should be read as a conjunction,
all of C1, C2, C3 must be true, forcing that for any model, p and q would have to be true,

15-414 LECTURE NOTES RUBEN MARTINS2

L14.4 Resolution

and r false. But if p and q are true and r false, then C0 will be false, preventing us from
simultaneously satisfying all clauses.

4 Binary Resolution

Resolution is both the name of a rule of inference and a (nondeterministic) algorithm
searching for a refutation of a theory T . Such a refutation is evidence that the theory is
unsatisfiable. In brief, we add more and more consequences to a theory in the hope of
reaching the empty clause. If we do, we conclude that the original theory was in fact
unsatisfiable because our notion of consequence preserves satisfiability. The other out-
come is that we reach saturation, that is, any further inference would only add clauses
already in the theory. In that case, it will turn out, the theory is satisfiable.

The single rule of inference we use can be written as follows:

p ∨ C ¬p ∨D

C ∨D
resolution

The two premises of the rule are clauses (really: sets of literals), even if we write them
using disjunction, so C has no copy of p and D has no copy of ¬p.

Thinking of the theory as a sequence of clauses C0, . . . , Ck−1, the rule looks like this:

p ∨ C Ci (i < k)
¬p ∨D Cj (j < k)

C ∨D Ck = Ci ▷◁p Cj

Here we have invented a notation for the justification of the new clause Ck as the result
of resolving Ci with Cj .

It is easy to see that this rule is sound in the sense that it preserves the set of models.
To see that, consider an assignment M such that M |= p ∨ C and M |= ¬p ∨ D. We
consider two cases:

1. M(p) = true. Then M |= D since M |= ¬p ∨D. Therefore M |= C ∨D.

2. M(p) = false. Then M |= C since M |= p ∨ C. Therefore M |= C ∨D.

Either way, M is a model of C ∨ D. Since we just extend the theory, any model of the
extended theory will automatically be also a model of the original theory.

If we can obtain the empty clause ⊥ by repeated application of this rule, we know
the original theory cannot be satisfiable. That’s because any all models are preserved,
and the empty clause has no models.

Let’s apply resolution in our example. We draw a line here between our original
sequence of clauses an the further clauses inferred by resolution. You should check you

15-414 LECTURE NOTES RUBEN MARTINS3

Resolution L14.5

understand the justification of each new clause.

¬p ∨ ¬q ∨ r C0

p C1

q C2

¬r C3

¬q ∨ r C4 = C1 ▷◁p C0

r C5 = C2 ▷◁q C4

⊥ C6 = C5 ▷◁r C3

Since we have derived the empty clause we know the original theory is unsatisfiable.
This is turn means that the original formula we started with (p → (q → r)) → (p∧q → r)
is valid.

By the way, one reason to think of the theory as a sequence instead of a tree is that we
can reuse intermediate clauses in multiple future inferences. This is not used in this ex-
ample, but it is a frequent occurrence in realistic examples and can save an exponential
amount of space and time.

5 Saturation

When we are not able to reach a contradiction, then by necessity the sequence of clauses
must reach saturation, that is, any further application of resolution will only lead to
clauses already in the sequence. We must reach such a state because if we start with a
finite set of clauses they contain only finitely many literals (say n) from which we can
form at mot 2n distinct clauses.

As an example of saturation, we try to prove

(p → (q → r)) → (p → r)

which is not valid. Negating as before, we get the CNF

(¬p ∨ ¬q ∨ r) ∧ p ∧ ¬r

Turning this into a sequence of clauses we get the same as before, except the previous
clause C2 is no longer available.

¬p ∨ ¬q ∨ r C0

p C1

¬r C2

¬q ∨ r C3 = C1 ▷◁p C0

¬q C4 = C3 ▷◁r C2

¬p ∨ ¬q C5 = C0 ▷◁r C2

Besides inferences we have already made, we could also try C1 ▷◁p C5 = ¬q but this is
equal to C4. In other words, we have reach saturation without deducing a contradiction
and we conclude the initial theory is satisfiable.

15-414 LECTURE NOTES RUBEN MARTINS4

L14.6 Resolution

But what is the satisfying assignment? Robinson’s original paper [Rob65] proves the
completeness of resolution by constructing a model from a saturated theory. Together
with the soundness proof of the last section this means resolution is a sound and com-
plete algorithm for determining satisfiability.

We refer you to the original paper for its correctness, but we show the algorithm. We
assume we have an enumeration

p0, p1, . . . , pn−1

of all the atoms in the saturated theory S. We build up an assignment M by considering
each pi in turn, deciding whether we should set M(pi) = true or M(pi) = false. We use
the representation of such a partial assignment as a set of literals containing pi in the
former case and ¬pi in the latter case.

We use the notation M to denote the negation of all the literals in M . One property
we need is that if C ⊂ M then M ̸|= C because M falsifies all literals in C. Furthermore,
no extension of M could possibly satisfy C because the truth value for all literals in C
has already been decided.

The basic strategy is to assign truth to an atom unless is is absolutely necessary to
assign it false. This would be the case at stage i if there is a clause C in the saturated
theory such that C ⊆ M ∪ {p}. So in that case we assign p the value false, represented
by adding ¬p to the partial model.

Writing out this process more formally:

M0 = { }
Mi+1 = Mi ∪ {pi} provided there is no C ∈ S s.t. C ⊆ Mi ∪ {pi}
Mi+1 = Mi ∪ {¬pi} provided there is a C ∈ S s.t. C ⊆ Mi ∪ {p}

M = Mn

Then M |= S, as proved by Robinson.
Lets apply this algorithm to our saturated theory and the order

p, q, r

so n = 3, p0 = p, p1 = q, and p2 = r. For our saturated theory

¬p ∨ ¬q ∨ r C0

p C1

¬r C2

¬q ∨ r C4 = C1 ▷◁p C0

¬q C5 = C4 ▷◁r C2

¬p ∨ ¬q C6 = C0 ▷◁r C2

we obtain the following sequence:

M0 = { }
M1 = {p} since there is no C ⊆ {p} = {¬p}
M2 = {p,¬q} since C5 ⊆ {p, q} = {¬p,¬q}
M3 = {p,¬q,¬r} since C2 ⊆ {p,¬q, r} = {¬p, q,¬r}

15-414 LECTURE NOTES RUBEN MARTINS5

Resolution L14.7

In this example we can now easily verify that M3 |= S. Since it is a model every clause in
the saturated set, it is of course also a model for the original set of clauses and therefore
a counterexample to satisfiability.

6 Checking Certificates

If we are given a resolution refutation (that is, one deducing ⊥), it is easy to check
that all applications of the resolution rule are correct as claimed. We wouldn’t even
need the intermediate clauses because we can always reconstruct them by calculating
Ci ▷◁p Cj . One can also prune some intermediate clauses by working backwards from
the contradiction and keeping only those clauses involved in its generation.

If we are given a saturated theory without an empty clause, we could easily check
that all rule applications are correct and that any further rule applications will not lead
to new consequences.

An alternative would be for the prover to apply Robinson’s algorithm to construct
a satisfying assignment and use that as a small certificate of satisfiability. A checker
can just take the original theory T and quickly verify that there is a true literal in each
clause. With such a certificate we no longer need the saturated theory at all.

7 SAT Solvers with Resolution Proofs

In practice, SAT solvers do not emit resolution proofs when a formula is unsatisfiable
since the resolution proof can be very large. However, some older SAT solvers still
support resolution proofs like BooleForce.6

SAT solvers take as input a propositional formula in CNF. In particular, the format
has three types of lines:

• header: p cnf n m in which n denotes the highest variable index and m the num-
ber of clauses

• clauses: a sequence of integers ending with “0”

• comments: any line starting with “c”

Given a propositional formula in CNF, a SAT solver returns one of the following
cases:

• s SATISFIABLE: The formula is satisfiable

• s UNSATISFIABLE: The formula is unsatisfiable

• s UNKNOWN: The solver cannot determine satisfiability

6Available at https://fmv.jku.at/booleforce/

15-414 LECTURE NOTES RUBEN MARTINS7

https://fmv.jku.at/booleforce/

L14.8 Resolution

In case the formula is satisfiable, the solver emits a certificate: lines starting with “v”
and a list of integers ending with 0 (e.g., v -1 2 4 0). If the formula is unsatisfiable,
then most solvers support emitting a proof of unsatisfiability to a separate file.

Consider the unsatisfiable formula that we looked at in Section 4:

(¬p ∨ ¬q ∨ r) ∧ (p) ∧ (q) ∧ (¬r)

The input for a SAT solver would be the following:

1 c p 1

2 c q 2

3 c r 3

4 p cnf 3 4

5 c ~p \/ ~q \/ r

6 -1 -2 3 0

7 c p

8 1 0

9 c q

10 2 0

11 c ~r

12 -3 0

An integer represents each variable. Negative integers correspond to negative liter-
als, whereas positive integers correspond to positive literals. Note that the comments
help map the variables to the corresponding integer variables and show the corre-
sponding clauses to improve readability for this example. However, you do not need
to write them when creating a formula to give to a SAT solver.

If you give this formula (stored in the file “example.cnf”) to BooleForce, then the SAT
solver will return:

1 $./ booleforce example.cnf

2 s UNSATISFIABLE

You can also ask BooleForce to emit a resolution proof:

1 $./ booleforce example.cnf -T example.proof

2 s UNSATISFIABLE

3 $ cat example.proof

4 1 -2 -1 3 0 0

5 2 1 0 0

6 3 2 0 0

7 4 -3 0 0

8 5 0 1 4 2 3 0

A detailed explanation of the output is available online. The first number in each line
corresponds to the clause index (similarly to C0, C1, . . ., as we did before). Then, the
numbers until the first “0” correspond to the clause, and the numbers between the “0”s
correspond to the index of the clauses being resolved. For instance, 5 0 1 4 2 3 0

means that this is clause C5 with is the empty clause (since the formula is unsatisfiable)
and was derived by resolving the clauses C1, C4, C2 and C3.

15-414 LECTURE NOTES RUBEN MARTINS8

https://fmv.jku.at/booleforce/README.tracecheck

Resolution L14.9

References

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, January 1965.

15-414 LECTURE NOTES RUBEN MARTINS9

	Introduction
	Satisfiability
	Clausal Form
	Binary Resolution
	Saturation
	Checking Certificates
	SAT Solvers with Resolution Proofs

