15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Induction

Ruben Martins*

Carnegie Mellon University
Lecture 9
Tuesday, February 13, 2024

1 Introduction

In Lecture 7 we analyzed reasoning about while loops. To do so, we introduced the
more abstract nondeterministic dynamic logic (NDL) with nondeterministic choice and
iteration. Eventually, we arrived at two axioms for iteration in NDL: unrolling and

induction:
[0*]Q < Q A [a][a*]@Q unrolling
[a*]Q <> Q A [o*](Q — [@]@) induction

From these and the other axioms, we were able to derive a practical version of the axiom
for reasoning about while loops with loop invariants .J. This is no longer an “if and only
if” but nevertheless allows us to prove properties of while loops.

[while Pa]Q < JAO(J AP — [a]J) NOWJ AP — Q)

Recall that (P is true if P is valid, which means true in every possible state.

This final axiom is precisely the form that Why3 (and other systems) use to generate
verification conditions for loops when provided with a loop invariant J. We still reason
about partial correctness, that is, this axiom only ensures that if the program terminates then
the postcondition) will hold in the final state. In the next lecture we will address total
correctness, which also requires termination.

Our formalization of NDL in Why3 in Lecture 8 proved correctness for various ax-
ioms allowing decomposition of « in [a]Q, but omitted NDL axioms for assignment

“Closely adapted from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414
http://www.cs.cmu.edu/~15414/lectures/07-loops.pdf
http://www.cs.cmu.edu/~15414/lectures/08-arrays.pdf

L9.2 Induction

and iteration. The first one is possible, but tedious due to the side condition on occur-
rences of variables; the second one is the subject of this lecture. So our goal is to prove
the correctness of the induction axiom in NDL.

Perhaps not surprisingly, this seems to require proof by induction. In general proofs
by induction are difficult to automate, so they are not natively available in Why3 or the
back-end provers such as alt-ergo, Z3, or CVC4. Instead we have to “trick” Why3 into
carrying out such proofs for us. We show how to do this, and then apply the learned
techniques to the induction axiom in NDL.

Learning goals. After this lecture, you should be able to:
¢ Use explicit induction in Why3

* Reason about the semantic validity of axioms in dynamic logic using mathemati-
cal induction

2 Peano’s Axioms

The theory of arithmetic as axiomatized by Peano concerns the natural numbers 0,1, 2, . ..
while in Why3 we have been dealing with integers ..., —2,—1,0,1,2,.... This gap is
not difficult to bridge, but in this lecture we will focus on natural numbers. You can
read more about Peano’s Axioms on Wikipedia.

He starts with axioms on equality, such as reflexivity, symmetry, and transitivity of
equality. Furthermore, there is a constant 0 and successor function S such that S(n) =
S(k) iff n = k. Furthermore, 0 # S(n) for all n. Finally, we have the induction axiom

P(0) A (Yn. P(n) = P(S(n)) — Yn.P(n)

where P(n) is an arbitrary predicate on natural numbers. In the context of this course,
P(n) is a property of n definable by a formula.

3 Induction Proofs in NDL

So far, we have been using NDL and its axioms to turn reasoning about programs into
problems of logical reasoning. Now we turn the tables: we want to see how to model
logical reasoning by program reasoning! The goal, in short, is to write a program a so
that [«] P(i) is true if there is an induction proof Vi. P(i). Actually, we want something
slightly stricter, namely to encoding particular induction schemas. In the first case, it
will simply Peano’s axiom.

So consider the following proposition in NDL:

[i<0; (i« i+1)P(i)

15-414 LECTURE NOTES RUBEN MARTINS!

https://en.wikipedia.org/wiki/Peano_axioms

Induction L9.3

Because the loop may be executed any number of times 0, 1,2, ..., this proposition is
valid in NDL if P(¢) holds for all i > 0. Let’s reason through a verification effort using
our axioms for NDL:

[05 (i « i+ 1)*]P(3)
iff = [i < 0][(i < i+ 1)*]P(3)
iff = Vii=0— [(i « i+ 1)*]P(3)
if EViii=0— PGi)ADP@E) = [i < i+ 1]P())

Here, the last step used the form of the induction axiom where we have replaced [a*]Q
by OQ. We can take some further steps to eliminate the 0 modality.

= Vi.i =0 — P>i) AD(P(i) = [i < i+ 1]P(i))
iff |=Vi.i=0— P@G)AD(P®) — Vi =i+1— P({))
iff = (Vi.i =0 — P>i)) AVi.i=0— O(P®i) = Vi'.i' =i+ 1 — P())

iff = P(0) AVi.i=0— O(P>) — P@i+1)

In the second conjunct, we lose the assumption about i = 0 underneath the [J modality
because we have to prove that P(i) — P(i+1) regardless of the state. We can formulate
the upshot of this line of reasoning as

=i 0; (i < i + 1)*]P(4) if = P(0) AVi. P(i) — P(i + 1)

In other words, using the induction axiom in NDL, we can reduce the proof of proving
the validity of [i < 0 ; (i < i + 1)*]P(i) to proving the validity of P(0) A Vi. P(i) —
P(i + 1), which should have been intuitively clear when we started.

4 Induction in Why3

Among the Why3 standard libraries we find int.SimpleInduction for mathematical
induction and also int . Induction for complete induction.

I module SimpleInduction

2

use Int

predicate p int

7 axiom base: p 0

9 axiom induction_step: forall n:int. 0 <= n -> pn -> p (n+1)
11 lemma SimpleInduction : forall n:int. O <= n -> p n

13 end

This module keeps the predicate p as well as the base and induction_step axioms ab-
stract and provides the lemma Simplelnduction. The idea is to clone this module by pro-
viding a concrete predicate for p. Secondly, we want to turn base and induction_step

15-414 LECTURE NOTES RUBEN MARTINS?

L9.4 Induction

into lemmas, which creates corresponding proof obligations. If they can be proved, we
obtain those two lemmas, plus Simplelnduction as a consequence.
Here is an example. We would like to prove

il Ca(n+1)
2
=0
We start by defining a sum function with a lower bound of a and upper bound of b,
inclusive.
1 let rec function sum (a : int) (b : int) : int =

2 variant { b - a }
if a > b then 0 else sum a (b-1) + b

Then we define the predicate P(n) intended for the induction, here called sum_square.

1 predicate sum_square (n : int) =
2 n > 0 -> sum 0 n = div (n*x(n+1)) 2

We can now clone the standard library as sketched above.

1 clone int.SimplelInduction
2 with predicate p = sum_square, lemma base, lemma induction_step

The summary of the whole theory is below. Just to be sure, we also restate the desired
property as a goal. This generates a proof obligation just like a lemma, but does not
assume the proven formula. This is helpful if we’d like to avoid polluting the search
space.

I theory SumSquarel

; use int.Int

use int.EuclideanDivision

@

6 let rec function sum (a : int) (b : int) : int =
7 variant { b - a }
8 if a > b then 0 else sum a (b-1) + b

10 predicate sum_square (n : int) =

11 n > 0 -> sum 0 n = div (n*(n+1)) 2

12

13 clone int.SimplelInduction

14 with predicate p = sum_square, lemma base, lemma induction_step
15

16 goal G : forall n:int. n >= 0 -> sum_square n

17

18 end

5 Induction via Recursion

Besides the technique above we can also often provide an explicit witness as a func-
tion. When we can prove the termination of such a witness function, and the contract

15-414 LECTURE NOTES RUBEN MARTINS®

Induction L9.5

expresses the desired property, then the theorem we would like to state becomes an

immediate consequence.
Here is a first way of achieving this®.

I theory SumSquare3

2

3 use int.Int

4 use int.EuclideanDivision

6 let rec function sum (a : int) (b : int) : int =
7 variant { b - a }
8 if a > b then 0 else sum a (b-1) + b

10 let rec function sum_rec (n : int) =

11 requires { n >= 0 }

12 variant { n }

13 ensures { result = div (n * (n+1)) 2 }
14 ensures { result = sum O n }

15 if n = 0 then O
16 else sum_rec (n-1) + n

18 goal G : forall n:int. n >= 0 -> sum O n = div (n * (n+1)) 2

20 end

The witness function here is sum_rec, with an explicit property statement following.
Essentially, sum_rec is a circular proof of the desired property, acceptable because the
variant shows that it is terminating.

An even slicker formulation of this technique is for the witness function to return
a Boolean, in effect making it a lemma. The key here is that the postcondition must
guarantee the property we ultimately want, so it might use the same predicate we used
with the explicit induction axiom.

theory SumSquare2

w N

use int.Int
4 use int.EuclideanDivision

<l

6 let rec function sum (a : int) (b : int) : int =
7 variant { b - a }
8 if a > b then 0 else sum a (b-1) + b

10 predicate sum_square (n : int) =
11 n > 0 -> sum 0 n = div (n * (n+1)) 2

13 let rec lemma sq (n : int) =

14 requires { n >= 0 }

15 variant { n }

16 ensures { result /\ sum_square n }
17 if n = 0 then true

*which we did not do in lecture
*which we did briefly show in lecture

15-414 LECTURE NOTES RUBEN MARTINS®

L9.6 Induction

18 else sq (n-1)
20 goal G : forall n:int. n >= 0 -> sum_square n

22 end

The verification condition in the n = 0 branch is exactly the base of the induction,
and the condition in the n > 0 branch is the induction step. In the tail call sq (n — 1)
we have to satisfy the precondition (n > 0) which is true, and then get to assume the
postcondition on the actual parameter, that is, sum_square (n — 1). We have to prove
sum_square n, precisely the implication that represents the induction step.

6 Revisiting Dynamic Logic in Why3
When we gave the mathematical definition of repetition in Dynamic Logic we wrote

wla*v iff there exists an n > 0 such that w[a]"v

wla]’v iffu=v
wla]™ v iff there exists u such that wa]u and pfa]™v

We now continue our formalization of NDL in Why3. You can find the code in the file
ndl-v2.mlw.

In order to represent the above definition, we define a new auxiliary predicate run_bdd
and give the definition of [o*]] in terms of the new predicate.

1 predicate run (omega : state) (alpha : prog) (nu : state)
2 predicate run_bdd (omega:state) (alpha:prog) (n:int) (nu:state)

4 axiom run_star : forall omega alpha nu.
run omega (Star alpha) nu
6 <-> exists n. n >= 0 /\ run_bdd omega alpha n nu

The formalization of run_bdd is via two simple axioms.

1 axiom run_bdd_O : forall omega alpha nu.
2 run_bdd omega alpha O nu <-> omega = nu

axiom run_bdd_1 : forall omega alpha n nu. n > 0 ->
4 run_bdd omega alpha n nu

<-> exists mu. run omega alpha mu /\ run_bdd mu alpha (n-1) nu
We’d now like to show that this implies the recursive specification, namely that
wla* v iff w = v Vv Ip.wla]p A pla*]v

Unfortunately, Why3 could not establish this directly, but we needed two simple lem-
mas. We conjecture that the existential quantification over n > 0 in the definition of
[a*] is to blame. In any case, with those two lemmas we can prove the above charac-
terization.

15-414 LECTURE NOTES RUBEN MARTINS’

http://www.cs.cmu.edu/~15414/lectures/09-induction/ndl-v2.mlw

Induction L9.7

1 lemma run_bdd_leftO : forall omega alpha.

2 run omega (Star alpha) omega

4 lemma run_bdd_leftl : forall omega alpha mu n nu. n >= 0 ->
5 run omega alpha mu /\ run_bdd mu alpha n nu

6 -> run_bdd omega alpha (n+1) nu

8 lemma run_star_rec : forall omega alpha nu.

9 (omega = nu

10 \/ exists mu. run omega alpha mu /\ run mu (Star alpha) nu)
11 <-> run omega (Star alpha) nu

Similarly, the loop unrolling axiom of dynamic logic, namely
[@"]Q < Q A [a][e"]Q

is easy to prove in both directions.

I lemma models_box_star : forall omega alpha q.
2 models omega (Box (Star alpha) q)
3 <-> models omega q /\ models omega (Box alpha (Box (Star alpha) q))

Asbefore, we have mapped the bi-implication from dynamic logic directly to bi-implication
in Why3, and also conjunction to to conjunction.

What remains now is to prove the representation of the induction axiom in Why?3,
which was impossible before.

7 Proving Induction for Dynamic Logic in Why3
We would like to prove the validity of computational induction in dynamic logic:

[@]Q < QA [](Q — [a]Q)

In our representation both directions of this bi-implication require induction.
We start by proving the left-to-right direction using several lemmas. We first state
them in ordinary mathematical language

Foralln >0, w, and v,
if wla]"w and pla]v for some p
then wla]p and p/'[o]™v for some

We prove this by induction on n. In Why3:

1 predicate run_bdd_left (n:int) = forall omega alpha nu.
2 (exists mu. run_bdd omega alpha n mu /\ run mu alpha nu)

3 -> (exists mu’. run omega alpha mu’ /\ run_bdd mu’ alpha n nu)
y

let rec lemma ind_run_bdd_left (n:int) : unit =

$]

6 requires { n >= 0 }

7 variant { n }

8 ensures { run_bdd_left =n }

9 if n = 0 then () else ind_run_bdd_left (n-1)

15-414 LECTURE NOTES RUBEN MARTINS®

L9.8 Induction

We can similarly prove the opposite direction of this implication, but it does not appear
to be necessary: We can already prove one direction of the induction axiom without
any further induction.

1 lemma induction_unwind : forall omega alpha q.

2 models omega (Box (Star alpha) q)

3 -> models omega q

4 /\ models omega (Box (Star alpha) (Implies g (Box alpha q)))

The other direction of the induction axiom is intuitively more complicated, but fol-
lows here just by one lemma, proved with a simple induction.

predicate run_bdd_inv (n:int) = forall omega alpha q.
2 models omega q
/\ models omega (Box (Star alpha) (Implies q (Box alpha q)))
4 -> forall nu. run_bdd omega alpha n nu -> models nu q
6 let rec lemma ind_run_bdd_inv (n:int) : unit =
7 requires { n >= 0 }
s variant { n }

9 ensures { run_bdd_inv n }
10 if n = 0 then () else ind_run_bdd_inv (n-1)

12 lemma induction_wind : forall omega alpha q.

13 models omega q

14 /\ models omega (Box (Star alpha) (Implies q (Box alpha q)))
15 -> models omega (Box (Star alpha) q)

8 Induction with Invariants

Induction with invariants just requires one lemma regarding validity (as expressed with
OP) and the properties we have already proved. We just summarize the lemma and
two theorems here. These can be found at the end of the file ndl-v2.mlw.

1 (* lemma: @ /\ []1(Q -> [alphalQ) -> [alpha*]Q *)
2 lemma induction_valid : forall omega q alpha.

models omega (And q (Valid (Implies q (Box alpha q))))
-> models omega (Box (Star alpha) q)

9]

6 (¥ lemma: []J(P -> @) -> [alpha]P -> [alphalQ *)
7 lemma dist_valid_box : forall omega alpha p q.
8 models omega (Valid (Implies p q))

9 -> models omega (Box alpha p)

10 -> models omega (Box alpha q)

12 (¥ induction with <nvariant J *)

13 lemma induction_inv : forall omega j alpha q.

14 models omega (And j

15 (And (Valid (Implies j (Box alpha j)))

16 (Valid (Implies j q))))
17 -> models omega (Box (Star alpha) q)

15-414 LECTURE NOTES RUBEN MARTINS’

http://www.cs.cmu.edu/~15414/lectures/09-induction/ndl-v2.mlw

Induction L9.9

The final theorem here is what we were aiming at, namely
JANOJ = (o) AOJ = Q) — [a*]Q

What we did not accomplish and still remains to be done is the formalization of the
axiom of convergence which concerns (a*)Q.

15-414 LECTURE NOTES RUBEN MARTINS!?

	Introduction
	Peano's Axioms
	Induction Proofs in NDL
	Induction in Why3
	Induction via Recursion
	Revisiting Dynamic Logic in Why3
	Proving Induction for Dynamic Logic in Why3
	Induction with Invariants

