
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Arrays

Ruben Martins*

Carnegie Mellon University
Lecture 8

February 8, 2024

1 Introduction

Our efforts to formalize how we can prove the correctness of programs have paid off!
We have presented a formal language of programs α and their semantics as a relation
ωJαKν between a prestates ω and a poststates ν. States here map variables to their
integer values. We then also formalized a language of formulas P in dynamic logic
and when they are true in a state, ω |= P . A characteristic of dynamic logic are three
modal operators [α]P (after all possible runs of α, the formula P is true), ⟨α⟩P (there is
a run of α after which P is true), and □P (P is valid, that is, true in all possible states).
Finally, we have provided some axioms for reasoning about programs in dynamic logic
in a rigorous way. These axioms allow us to break down the structure of programs
occurring in formulas until we are left with a formula in integer arithmetic, no longer
containing [α]P and ⟨α⟩P . This required loop invariants in order eliminate [α∗]P . As we
will see in the next lecture, we also need loop variants to eliminate ⟨α∗⟩P .

I’d like to draw your attention to the fact that, after eliminating programs, we end
up with a formula in the language of integer arithmetic. Most programs we write are
not confined to integers but use other data types such as lists, trees, arrays, streams,
etc. How do we integrate such types into the formal reasoning framework? On one
hand, integers are universal in that there is a technique called Gödel numbering by which
we code elements of these other types as integers. On the other hand, this is only
of theoretical interest in that it is not practical to reason, say, about trees using their
Gödel numbers. Mathematicians have long established the axiomatic method to reason

*Closely adapted from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414/

L8.2 Arrays

about complex structures. We keep matters abstract by defining a language that denotes
elements of the structure and then axioms we can use to reasoning about them. For
example, the theory of groups arises from postulating a binary operation ‘a · b’, an
unary inversion ‘a−1’, and a neutral element e and some axioms such as a · a−1 = e. An
important consequence of this approach is that whenever we recognize that a concrete
structure satisfies the axioms then we can inherit all the theorems we have proven for
this instance.

We will follow the axiomatic approach, namely specifying data structures with new
operations and axioms describing their properties. Depending on how common par-
ticular data types are, back-end provers may either treat them generically (reasoning
directly with the axioms) or use specialized decision procedures for particular theo-
ries. One of the big research questions in this area is then how to combine theories in
a sound and perhaps even complete way. In imperative programming, a particularly
important theory is the theory of arrays because they constitute such a widely used ab-
straction in imperative programming. In this lecture, we will study dynamic logic itself
which (surprisingly!) provides a nice illustration of the theory of arrays.

An alternative approach is that of type theory, which provides general mechanisms
to define large classes of types such as inductive types (like lists, trees, etc.), coinduc-
tive types (like streams), quotient types (like rational numbers), etc. In this approach we
obtain programming constructs (like pattern matching against trees) and matching rea-
soning principles (like induction over trees) from the same definitions. This approach
is studied in courses such as 15-312 Foundations of Programming Languages and 15-317
Constructive Logic.

Learning goals. After this lecture, you should be able to:

• Use read-over-write axioms to reason about (abstract) arrays;

• Use extensionality to reason about array equality;

• Apply the axiomatic method to new theories;

• Reason, at the meta-level, about dynamic logic in Why3.

2 The Theory of Arrays

How do we reason about arrays in an imperative language? Because arrays are a mu-
table data structure this is actually quite tricky, as you likely have experienced in the
programming assignments. When we write to an array at a given index, for example,
we have to keep track not only that this particular element changes but that all others
remain the same. Consequently, loop invariants are complicated because they have to
address not only how arrays are changed but also how arrays do not change. Moreover,
“change” is really not something that is easily modeled in logic—witness, all the effort
we had to go through in our development of dynamic logic. At first one might think

15-414 LECTURE NOTES RUBEN MARTINS1

Arrays L8.3

we can just provide some new constructs in dynamic logic for programs that perform,
for example, array assignment. But that’s not enough: we also need to be able to elimi-
nate such programs so we can reason about the resulting pure formula in the theory of
arrays.

A key step, then is to abstract away from the imperative nature of arrays to an abstract
axiomatic form. For that purpose we have a type ι for array indices and a separate type
τ for the array elements, as well as a type array ι τ for arrays. We then have just two
operations, read and write.

read a i : τ read from array a at index i
write a i v : array ι τ write to array a at index i

The second expression does not mutate a (a concept that doesn’t directly exist) but
denotes a new array distinct from a.

There are just two axioms defining these operations

i = k → read (write a i v) k = v
i ̸= k → read (write a i v) k = read a k

These axioms are referred to as read-over-write since the read operation is applied to the
result of a write operation. We do not directly reason about whether “array access is in
bounds” which we delegate to the translation from the concrete arrays in the program-
ming language to abstract arrays.

As we will see when we implement this theory, these axioms will allow us to prove a
lot of useful properties, but by themselves are insufficient. The problem is exemplified
the the following equation:

write a i (read a i)
?
= a

If we write back to an array at index i the value already contained in the array at that
index the array should not change. We might try to think of many ways to add axioms
to capture this property, but there is a generic and powerful way to do this using the
axioms of extensionality for arrays.

(∀i. read a i = read a′ i)→ a = a′

Why does this capture our example above? We have to prove

∀k. read (write a i (read a i)) k ?
= read a k

We distinguish two cases: k = i and k ̸= i. If i = k, we simplify the left-hand side using
the first read-over-write axiom to read a i which is equal to read a k since i = k. If k ̸= i,
we simplify the left-hand side using the second read-over-write axiom to read a k, which
is the same as the right-hand side.

15-414 LECTURE NOTES RUBEN MARTINS2

L8.4 Arrays

3 Translating Mutable Arrays to Logical Arrays

We only sketch how mutable arrays in programs are translated to logical arrays in the
theory of arrays. Essentially, an expression a[e] requires a precondition that 0 ≤ e <
length a and becomes read a e. An assignment a[e] ← e′ also generates a precondition
that 0 ≤ e < length a and then becomes a′ ← write a e e′, where a′ is substituted for a
in the remaining program and postcondition. For this purpose we need to add a new
constant length a add some axioms, such as length (write a i v) = length a.

Because of the preconditions, we separate out array accesses into a new form of pro-
gram

x← a[e]

For example,
a[i]← a[i] + 1

would become
x← a[i]
a[i]← x+ 1

for a fresh x.
We can describe in the form of axioms in dynamic logic how we reason about the

new constructs.

[x← a[e]]P (x)↔ 0 ≤ e ∧ e < length a ∧ ∀x.x′ = read a e→ P (x′)
(x′ not in a[e] or P (x))

[a[e]← e′]P (a)↔ 0 ≤ e ∧ e < length a ∧ ∀a′.a′ = write a e e′ → P (a′)
(a′ not in a[e], e′ or P (a))

4 States as Arrays

After a moment’s reflection you should be able to see that states that we have been
using to define dynamic logic use exactly the operations for abstract arrays! States are
indexed by variables that are mapped to integers c ∈ Z.

ω(x) readω x
ω[x 7→ c] writeω x c

We didn’t need anything else.
This now suggests a potentially ambitious project: could we formalize the (abstract)

syntax and semantics of dynamic logic?
The rest of this lecture will be devoted to give a positive answer to this question.
A key decision is to focus on reasoning about programs rather than executing them. We

therefore don’t even provide a concrete definition of variables and states—they remain
abstract. The only thing we know about them are the read-over-write and extensionality
axioms. We do, however, commit to values being integers so we can reason about some
concrete programs manipulating integers. Note, specifically, that types state and var

are declared but not defined.

15-414 LECTURE NOTES RUBEN MARTINS3

Arrays L8.5

1 module NDL

2

3 use int.Int

4

5 type state

6 type var

7

8 (* "array" operations and axioms *)

9 function read (omega : state) (x : var) : int

10 function write (omega : state) (x : var) (v : int) : state

11

12 axiom read_eq : forall x y omega v.

13 x = y -> read (write omega x v) y = v

14 axiom read_ne : forall x y omega v.

15 x <> y -> read (write omega x v) y = read omega y

16

17 (* extensionality *)

18 axiom ext : forall omega nu.

19 (forall x. read omega x = read nu x) -> omega = nu

20

21 end

We test our encoding by letting Why3 verify two simple properties of arrays: when
writing consecutively to the same index, the second one will overwrite the first, and
when we write back the element we just read the array will be unchanged.

1 lemma ex1 : forall omega x v1 v2.

2 read (write (write omega x v1) x v2) x = v2

3

4 lemma ex2 : forall omega x.

5 write omega x (read omega x) = omega

Fortunately, this can be proved without any problems. During the live coding, we
used the keyword lemma although we don’t intend these to be actually used in prov-
ing. A better methodology could be to use the keyword goal which means it must be
proved in a verification effort but the fact will not be used subsequently. Doing so is
not logically problematic, but the more axioms and lemmas there are, the more difficult
the theorem proving effort so it is generally best to introduce lemmas only when they
are needed.

5 Expressions and Evaluation

Next step will be to define expressions. We use the facility to define recursive types in
Why3, which we have seen before for regular expressions and some homework prob-
lems.

Evaluation will then be a function from a state and an expression to an integer. We
declare it with function instead of let function since we do not intend to use it com-
putationally.

1 type exp = Var var | Const int | Minus exp exp (* | ... *)

2

15-414 LECTURE NOTES RUBEN MARTINS4

L8.6 Arrays

3 function eval (omega : state) (e : exp) : int =

4 match e with

5 | Var x -> read omega x

6 | Const c -> c

7 | Minus e1 e2 -> eval omega e1 - eval omega e2

8 end

For a more realistic language we would have further kinds of expressions, but for this
small experiment it is enough to include variables, integer constants, and subtraction.

Again, we test our definitions (and the Why3 provers). The first proves that 1 − 2
evaluates to −1, the second that 0− x evaluates to −3 if x 7→ 3.

1 lemma ex3 : forall omega.

2 eval omega (Minus (Const 1) (Const 2)) = -1

3

4 lemma ex4 : forall omega x.

5 eval (write omega x 3) (Minus (Const 0) (Var x)) = -3

6 Tests and Programs

In dynamic logic, propositions and programs mutually depend on each other. Only
some of the proposition can actually be effectively evaluated, so in concrete programs
we usually rule out formulas such as [α]P or ∀x. P . We therefore distinguish tests to
appear in programs from formulas to reason about programs. For this live-coding ex-
periment we keep both layers small.

First, tests can be evaluated to Booleans. To avoid name clashes, we use a postfix _t

in the names of the constructors.
1 type test = Lt_t exp exp | Not_t test | True_t | False_t

2

3 function eval_t (omega : state) (t : test) : bool =

4 match t with

5 | Lt_t e1 e2 -> eval omega e1 < eval omega e2

6 | Not_t t -> not (eval_t omega t)

7 | True_t -> true

8 | False_t -> false

9 end

10

11 lemma ex5 : forall omega y.

12 eval_t (write omega y 17) (Lt_t (Const 13) (Var y))

The example here proves that 13 < y if y 7→ 17.
Next, we come to the language and meaning of programs. Again for simplicity we

use the nondeterministic version of dynamic logic programs; conditionals and while
loops can be coded in standard way we discussed earlier, as can be skip and abort.

skip ≜ ?true

abort ≜ ?false

if P αβ ≜ (?P ; α) ∪ (?¬P ; β)

whileP α ≜ (?P ; α)∗ ; ?¬P

15-414 LECTURE NOTES RUBEN MARTINS5

Arrays L8.7

1 type prog =

2 | Assign var exp

3 | Seq prog prog

4 | Union prog prog

5 | Star prog

6 | Guard test

An explicit definition of ωJαKν is rejected by Why3 since it cannot prove termination
(and should not be able to prove termination) due to repetition. We therefore turn each
clause in the usual semantic definition into an axiom. For example,

ωJx← eKν iff ν = ω[x 7→ ωJeK]

is turned into
1 predicate run (omega : state) (alpha : prog) (nu : state)

2

3 axiom run_assign : forall omega x e nu.

4 run omega (Assign x e) nu <-> nu = write omega x (eval omega e)

The place where we depart is repetition, which we just define recursively instead of
based on some unknown number of iterations. We may revisit this issue in a future
lecture.

1 axiom run_star : forall omega alpha nu.

2 run omega (Star alpha) nu

3 <-> omega = nu \/ exists mu. run omega alpha mu /\ run mu (Star

alpha) nu

We show the complete listing below, including two examples.
1 predicate run (omega : state) (alpha : prog) (nu : state)

2

3 axiom run_assign : forall omega x e nu.

4 run omega (Assign x e) nu <-> nu = write omega x (eval omega e)

5 axiom run_seq : forall omega alpha beta nu.

6 run omega (Seq alpha beta) nu <-> exists mu. run omega alpha mu /\

run mu beta nu

7 axiom run_union : forall omega alpha beta nu.

8 run omega (Union alpha beta) nu <-> run omega alpha nu \/ run

omega beta nu

9 axiom run_star : forall omega alpha nu.

10 run omega (Star alpha) nu

11 <-> omega = nu \/ exists mu. run omega alpha mu /\ run mu (Star

alpha) nu

12 axiom run_guard : forall omega t nu.

13 run omega (Guard t) nu <-> eval_t omega t /\ nu = omega

14

15 lemma ex6 : forall omega x.

16 run omega (Assign x (Const 1)) (write omega x 1)

17

18 (* this passes in z3, not in alt -ergo or cvc4 *)

19 lemma ex7 : forall omega x v.

20 run (write omega x v)

21 (Assign x (Minus (Var x) (Const 1)))

22 (write omega x (v-1))

15-414 LECTURE NOTES RUBEN MARTINS6

L8.8 Arrays

Example 6 proves that the poststate of x← 1 contains the mapping x 7→ 1, and example
7 shows

ω[x 7→ v]Jx← x− 1Kω[x 7→ v − 1]

which actually several provers fail.

7 Formulas

Next, we come to the formulas P of dynamic logic. For the live-coding exercise we
keep the language simple, using only P ∧Q, P → Q, and ∀x.Q, as well as [α]P and em-
bedding tests. We further use □P so we can express the induction axiom. We postpone
⟨α⟩P to the next lecture.

1 type ndl =

2 | And ndl ndl

3 | Implies ndl ndl

4 | Forall var ndl

5 | Box prog ndl

6 | Test test

7 | Valid ndl

We specify the semantics ω |= P with a corresponding predicate on WhyML. The
semantic definitions then become axioms.

1 predicate models (omega : state) (p : ndl)

2

3 axiom models_and : forall omega p q.

4 models omega (And p q) <-> models omega p /\ models omega q

5

6 (* this is how far we got in lecture *)

7

8 axiom models_implies : forall omega p q.

9 models omega (Implies p q) <-> (models omega p -> models omega q)

10 axiom models_forall : forall omega x p.

11 models omega (Forall x p) <-> forall v. models (write omega x v)

p

12 axiom models_box : forall omega alpha q.

13 models omega (Box alpha q) <-> forall nu. run omega alpha nu ->

models nu q

14 axiom models_test : forall omega t.

15 models omega (Test t) <-> eval_t omega t

16 axiom models_valid : forall omega p.

17 models omega (Valid p) <-> forall nu. models nu p

8 Proving the Axioms

We developed some axioms so we could reduce properties of programs to arithmetic
formulas only, in a syntactic manner. While they are axioms in dynamic logic, we

15-414 LECTURE NOTES RUBEN MARTINS7

Arrays L8.9

proved that they are valid with respect to the semantic interpretation of the formu-
las. Actually, we proved only one or two but convinced ourselves that we could prove
the others.

As a simple example, consider the axiom to break down program composition.

[α ; β]Q↔ [α][β]Q

We express this as

1 lemma models_seq : forall omega alpha beta q.

2 models omega (Box (Seq alpha beta) q)

3 <-> models omega (Box alpha (Box beta q))

where we converted the ‘↔’ into a ‘↔’ at the metalevel instead of an explicit dynamic
logic connective.

Turns out that Why3 can easily prove the soundness of this axiom, and the other ones
except assignment (which we skipped due to the complication of variable renaming)
and induction (since, as the name suggests, would require induction). We may return
to this in Lecture 10. Here, we just assert induction as an axiom, and we would have to
do the same for reasoning with invariants.

1 lemma models_guard : forall omega t q.

2 models omega (Box (Guard t) q) <-> models omega (Implies (Test t)

q)

3

4 lemma models_seq : forall omega alpha beta q.

5 models omega (Box (Seq alpha beta) q)

6 <-> models omega (Box alpha (Box beta q))

7

8 lemma models_union : forall omega alpha beta q.

9 models omega (Box (Union alpha beta) q)

10 <-> models omega (Box alpha q) /\ models omega (Box beta q)

11

12 lemma models_star : forall omega alpha q.

13 models omega (Box (Star alpha) q)

14 <-> models omega (And q (Box alpha (Box (Star alpha) q)))

15

16 (* we omit the axiom for assign due to complexity of renaming *)

17 (* lemma models_assign : ? *)

18

19 (* next must be an axiom since its proof would require induction *)

20 axiom induction : forall omega alpha q.

21 models omega (Box (Star alpha) q)

22 <-> models omega (And q (Box (Star alpha) (Implies q (Box alpha q

))))

23

24 lemma box_valid : forall omega alpha p.

25 models omega (Valid p) -> models omega (Box alpha p)

The complete live code from this lecture can be found in the file ndl.mlw.

15-414 LECTURE NOTES RUBEN MARTINS8

http://www.cs.cmu.edu/~15414//lectures/08-arrays/ndl.mlw

L8.10 Arrays

9 Discussion

What we have done today is actually a bit mind-bending. We spent several lectures
to develop dynamic logic in order to justify the correctness of what Why3 was doing.
Or at least some abstraction of it that was tractable. In this lecture we used Why3 in
order to formalize and, to some extent, verify the axioms to reason about programs in
dynamic logic.

Besides being cool, it should help increase our confidence in dynamic logic, even
though there are possible loopholes: if Why3 is incorrect because its foundations are
wrong, then Why3 might certify dynamic logic even though it is also wrong. But we
also saw in lecture that if we made a mistake in any of the proposed axioms, they were
not proved. So it is clearly better than simply relying on our general ability to reason
mathematically. Ultimately, though, we can never be completely certain in this kind of
metacircular formalization. That would be too much to ask.

There are techniques to reduce what we call the trusted computing base, something we
can justify mathematically but not within the programming language. For example, if
we asked Why3’s decision procedures to hand us a formal proof (rather than just saying
yes, no, or maybe) we could then independently check the validity of the proof with a
small checker. Such so-called proof-producing decision procedures are quite interesting and
possibly the subject of a lecture later in the semester, once we have covered the notion
of formal proof.

15-414 LECTURE NOTES RUBEN MARTINS9

	Introduction
	The Theory of Arrays
	Translating Mutable Arrays to Logical Arrays
	States as Arrays
	Expressions and Evaluation
	Tests and Programs
	Formulas
	Proving the Axioms
	Discussion

