15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Data Structures

Ruben Martins*

Carnegie Mellon University
Lecture 3
January 23, 2024

1 Introduction

Our study of logical contracts so far has focused on control structures: How do functions,
assignments, and loops give rise to verification conditions that entail the correctness of
the code? In the next example we will introduce two elementary data structures (lists
and queues) and verify an implementation of queues using two lists. We then deepen
our investigation into how to reason about data structures. A key concept that we need
to capture is that of a data structure invariant. With executable contracts, such invariants
are checked by functions. With logical contracts, they are expressed as logical prop-
erties of the data structures. We can classify data structures as persistent (also called
immutable) and ephemeral (also called mutable). Persistent data structures are prevalent
in functional programming, while ephemeral data structure are more common in im-
perative programming. Since WhyML covers a spectrum of functional and imperative
programming, we will consider both and identify some commonalities and differences.

Learning goals. After this lecture, you should be able to:

¢ Formulate and verify non-executable specifications, while understanding some
of their pitfalls

¢ Write logical contracts for small functional programs over simple immutable data
types such as lists

“Based on notes written by Frank Pfenning in Spring 2022. This lecture was given by Tony Yu.

http://www.cs.cmu.edu/~15414/

L3.2 Data Structures

¢ Verify simple code over (inductive) data structure

¢ Learn to formulate data structure invariants, and how work with them in Why3

2 Nonexecutable Specifications

The specification we used in our verification of the mystery function was executable:

| let rec function fib (m:int) : int =
> requires { n >= 0 }

3 variant { n }

. if n = 0 then O

5 else if n = 1 then 1

6 else fib (n-2) + fib (n-1)

We draw your attention here to three keywords: 1let rec means that we are defining
and executable, recursive function fib. The additional keyword function means that
we can use fib in contracts to reason about code. This requires the fib function to be pure
(have no effects, just return a value) and terminating. Purity is established simply by
traversing the code, while termination comes from proving the verification condition
for variant { n }.

In practice it is mostly the case that our specifications are not executable but purely
logical formulas. That’s because they are intended to express what the function accom-
plishes, but abstract away from how. We will see a number of ways to express these
logical specifications. As a first example, we can express the defining property of the
function fib rather than giving its explicit definition.

We start with declaring fib to be a function from integers to integers and then describe
three properties as axioms.

function fib (n:int) : int

2 axiom fib0 : fib 0 = 0

3 axiom fibl : fib 1 = 1

4 axiom fib2 : forall n:int. fib (n+2) = fib (n+1) + fib n

Describing the desired properties by axioms is very elegant, and can be used directly for
logical reasoning about the code. For example, if we swap out the recursive definition
of fib with the above, our mystery function f will still be verified just as easily (and
possibly more easily). You can experiment yourself with the file mystery.mlw.

On the other hand, it also has a very serious danger: if we aren’t careful, our ax-
ioms could be inconsistent by which we mean they derive a contradiction. If we have a
contradiction we can conclude anything from that (because we are in an impossible sit-
uation), including any verification condition. As an example, let’s say we made a typo
and wrote fib 0 = 1 in the second line, which would imply the contradictory 0 = 1.
We also change the postcondition to wrongly claim result = fib (n-1).

function fib (n:int) : int

2 axiom fib0 : fib 0 = 0

3 axiom fibl : fib 0 = 1 (* bug here!! *)

4 axiom fib2 : forall n:int. fib (n+2) = fib (n+1) + fib n

15-414 LECTURE NOTES RUBEN MARTINS!

http://www.cs.cmu.edu/~15414//lectures/03-datastructures/mystery.mlw

Data Structures L3.3

6 let £ (n:int) : int =

7 requires { n >= 0 }

8 ensures { result = fib (n-1) } (* bug here!! *)
9 let ref i = 0 in

10 let ref a = 0 in

11 let ref b = 1 in

12 while (i < n) do

13 invariant { 0 <= i <= n }

14 invariant { a = fib i /\ b = fib (i+1) }
15 variant { n-i }

16 b <- a + b ;

17 a <- b - a ;

18 i <-3i + 1

19 done ;

20 assert { i = n /\ a = fib i } ;

21 a
Because the axioms are inconsistent, the verification still succeeds!

% why3 prove -P alt-ergo mystery.mlw
File mystery.mlw:

Verification condition f’vc.

Prover result is: Valid (0.00s, 2 steps).

We can also prove it through the IDE and then replay the session:

% why3 ide mystery.mlw
(prove and save session)
% why3 replay mystery
1/1 (replay OK)
b
As a reminder, our contracts are blatantly incorrect! Because this is a serious problem,
Why3 offers the possibility to search for inconsistencies among the axioms using the
--smoke-detector option to the replay command.

% why3 replay --smoke-detector mystery

1/1 (replay failed)

goal ’f’vc.0’, prover ’CVC4 1.7’: result is: Valid
(0.02s, 1949 steps) -> Smoke detected!

Replay failed.

When reviewing your assignments, we will run the smoke detector, and you should
do the same on your session files before you hand in homework assignments. While
in this particular example the error was obvious, when specifications become more
complex it is quite easy to introduce subtle errors into the specification. You also need
to keep in mind that the smoke detector may not always work (the inconsistency is
too hard to prove), and that errors in your axioms may render them incorrect without
being inconsistent. You should always be careful when using axioms since inconsistent
axioms will let you verify any result. Therefore, we recommend using axioms only
when necessary.

15-414 LECTURE NOTES RUBEN MARTINS?

L3.4 Data Structures

3 Verifying Properties of Data Structures

For the moment, we'll stay in the functional world, although in WhyML we use data
structures similarly also in imperative programs. There is a clever implementation of
queues in a functional language using two stacks (usually directly represented by lists),
sometimes called functional queues. If the queue is used in a single-threaded way (that
is, we don’t dequeue from a queue in the same state more than once) then amortized
analysis shows that both enqueue and dequeue operations have constant amortized
cost.

The basic algorithmic idea is as follows. The queue is represented by two lists, the
front and the back. Initially both are empty. When we enqueue, we add elements to the
back, and when we dequeue, we take them from the front. If the front happens to be
empty when a dequeue request comes in we reverse the back to become the new front.
For example, after enqueuing 1, 2, 3 in that order, the front is still empty and the back
will be the list [3, 2, 1]. If we now dequeue, the front will become [1, 2, 3] (the reverse of
the back) and we remove 1 from the front, leaving it [2, 3] with the back empty.

To represent the queue, we see a couple of new constructs. One of them is polymor-
phism because we would like queues to be generic in the types of the elements. In
particular, the type queue ’a will be a queue with elements of type ’a (usually pro-
nounced alpha). We also need lists, which we can find in the Why3 Standard Library.
Among many other things, we find:

1 type list ’a = Nil | Cons ’a (list ’a)

g let rec function (++) (11 12: list ’a) : list ’a =
4 match 11 with

5 | Nil -> 12

6 | Cons x1 rl -> Comns x1 (ri1 ++ 12)

8 let rec function reverse (1: list ’a) : list ’a =
9 match 1 with
10 | Nil -> Nil

11 | Cons x r -> reverse r ++ Cons x Nil
12 end

These functions are declared with let rec function which means they can be used in
contracts as well as computationally. We do note that, computationally, we may want
to use a different function that this particular reverse because its complexity is O(n?)
for a list of length n. We'll note that, but we won’t worry about it in today’s lecture.

We see that lists have constructors Nil and Cons and that we discriminate between
lists using the expression match ... with ... end. We use a record of two elements,
the front and the back, as our representation of queues.

type queue ’a = { front : list ’a ; back : list ’a }

We would like to define the following functions

1 empty () : queue ’a
2 enqg (x : ’a) (g : queue ’a) : queue ’a
deq (q : queue a) : option (’a , queue ’a)

15-414 LECTURE NOTES RUBEN MARTINS®

https://www.why3.org/stdlib/

Data Structures L3.5

A queue might be empty, so deq returns and optional pair consisting of the first ele-
ment and the remainder of the queue. For this we need the option library:

1 type option ’a = None | Some ’a

Before we write code, we should decide on the specifications. The key idea is that we
use a single list to represent the queue, with the first element in the queue at the front of
the list. In other words, we use another data structure (a list) in the specification of the
behavior of the queue. Of course, we do not want to use such a list as an implementation
because the cost of an enqueue operation would be linear in the size of the queue (rather
than have amortized constant cost). Therefore we define the function sequence that
represents the state of a queue in the proper sequence. Recall that because we add the
elements to the back, to represent the proper state of the queue we have to reverse the
back.

I function sequence (g : queue ’a) : list ’a = q.front ++ reverse q.back

Now let’s write the postconditions for all of the functions. They have no precondition
since any state of the queue is valid. The ones for empty and enq are fairly straightfor-
ward. For the enqueue operation we add the new element to the end of the sequence.

let empty () : queue ’a =

2 ensures { sequence result = Nil }

A

5 let enq (x : ’a) (q : queue ’a) : queue ’a =

6 ensures { sequence result = sequence q ++ Cons x Nil }

8

9 let deq (q : queue ’a) : option (’a , queue ’a) =

For the dequeue operation, we have to return Nil if the queue is empty and Some (x, r)
if z is at the front of the queue and r is the remainder. Writing this out logically, we use
an existential quantifier.

1 let deq (q : queue ’a) : option (’a , queue ’a) =

2 ensures { (result = None /\ sequence q = Nil)
3 \/ (exists x:’a. exists r:queue ’a. result = Some(x,r)
4 /\ sequence q = Cons x (sequence r)) 1}

15-414 LECTURE NOTES RUBEN MARTINS*

L3.6 Data Structures

At this point the code itself is not too difficult, just for the case of enqueue we nest
two matches because if the front is empty the queue is empty only if the back is also
empty. We show the code here; the live-coded version which may be different in minor
details can be found in queue.mlw.

1 module Queue

3 use int.Int

4 use list.List

5 use list.Append

6 use list.Reverse
7 use option.Option

9 (* type list ’a = Nil | Cons ’a (list ’a) *)
10 (¥ type option ’a = None [Some ’a *)

12 type queue ’a = { front : list ’a ; back : list ’a }

14 function sequence (q : queue ’a) : list ’a = q.front ++ reverse q.
back

16 let empty () : queue ’a =
17 ensures { sequence result = Nil }
18 { front = Nil ; back = Nil }

20 let enqg (x : ’a) (q : queue ’a) : queue ’a =
21 ensures { sequence result = sequence q ++ (Cons x Nil) }
22 { front = q.front ; back = Cons x q.back }

24 let deq (q : queue ’a) : option (’a , queue ’a) =

25 ensures { (sequence q = Nil /\ result = None)

2 \/ (exists x:’a, q’:queue ’a. sequence q = Comns x (
sequence q’) /\ result = Some (x,q’)) }

27 match q.front with

28 | Nil -> match reverse q.back with

29 | Nil -> Nomne

30 | Cons y ys -> Some (y, { front = ys ; back = Nil })

31 end

32 | Cons x xs -> Some (x, { front = xs; back = q.back })

33 end

3

35 end

While the code and specifications seem correct, we cannot be 100% confident that the
prover will be able to verify it. In particular, the reasoning depends on the lemmas in
the libraries pertaining to the properties of append (‘++’) and reverse. Fortunately, in
this case it succeeds. Just for variety, we tried it with the CVC4 prover.

% why3 prove -P cvc4d queue.mlw

queue.mlw Queue empty’vc: Valid (0.04s, 6867 steps)
queue.mlw Queue eng’vc: Valid (0.05s, 7687 steps)
queue.mlw Queue deq’vc: Valid (0.08s, 13374 steps)
YA

15-414 LECTURE NOTES RUBEN MARTINS®

http://www.cs.cmu.edu/~15414//lectures/03-datastructures/queue.mlw

Data Structures L3.7

4 Data Structure Invariants

As a simple example of data structure invariants we reconsider our implementation of
queues. We would like to extend the interface with a function gsize that returns the
number of elements in a queue. The obvious way to compute this would be to compute
the lengths of the front and back and add them, but the complexity would be linear
in the size of the queue. To answer this query in constant time we add a size field
to the queue and maintain it as we enqueue or dequeue elements. The data structure
invariant here is that the size field always contains the sum of the lengths of the front
and back.

type queue ’a = { front : list ’a ;
2 back : list ’a ;
: size : int }
| invariant { size = length front + length back }

In the logic, the verifier assumes the invariant when reasoning about queues. This
could create a logical inconsistency (everything is provable!) if the invariant is unsatis-
fiable. For example, the trivial invariant false means any program in the scope of this
declaration could now be verified. To avoid this, Why3 will try to prove that there ex-
ists an instance of the data structure for which the invariant is satisfied. For complex
invariants this can be difficult, so WhyML gives you a way to specify an instance of the
data structure satisfying the invariant with a “by” clause. In this particular case it would
be unnecessary, but it is good practice to always supply it.

type queue ’a = { front : list ’a ;
2 back : list ’a ;
size : int }
invariant { size = length front + length back }

by { front = Nil ; back = Nil ; size = 0 }

In this example it is relatively easy to update the code to maintain the size field and
Why3 will prove that it is always correct. In constructing the verification condition we
may think of the invariant as being assumed at the beginning of a function (like a pre-
condition) and proved at the end of a function (like a postcondition). In between, the
invariant may be violated, although this possibility does not come into play here. It is
necessary because you may build or modify an element of the data structure incremen-
tally and only at the end does the invariant hold.

The gsize function just returns the size field. In addition, the postcondition certifies
that it is indeed the length of the queue (when viewed as a single sequence of element,
which represents the client’s perspective.

1 let gsize (q : queue ’a) : int =
2 ensures { result = length (sequence q) }
q.size

15-414 LECTURE NOTES RUBEN MARTINS®

	Introduction
	Nonexecutable Specifications
	Verifying Properties of Data Structures
	Data Structure Invariants

