
Mini-Project 2
Decision Procedures

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Friday, April 5, 2024 (checkpoint)
23:59pm, Friday, April 19, 2024 (final)

150 pts

You may, but are not required to, do this assignment with a partner.
The mini-projects have two due dates:

• Checkpoint at 23:59pm, Fri Apr 5, 2024 (70 pts)

• Final projects at 23:59pm, Fri Apr 19 2024 (80 pts)

No late days may be used on the checkpoint portion of the project. You may recover up to 40
of the points you lost at the checkpoint if you revise the first part with your final submission. For
the checkpoint, having a fully verified version may be challenging but you can recover the points
regarding verification. However, your implementation should be working and we provide a set
of CNF formulas for you to test your ‘sat‘ function.

The mini-project must be submitted electronically on Gradescope. Please carefully read the
policies on collaboration and credit on the course web pages at http://www.cs.cmu.edu/~15414/
/assignments.html.

If you are working with a partner, only one of the two of you needs to submit to each Grade-
scope assignment. Once you have uploaded a submission, you should select the option to add
group members on the bottom of the screen, and add your partner to your submission. Your
partner should then make sure that they, too, can see the submission.

As before, we give the advice that: Elegance is not optional! For writing verified code,
this applies to both: the specification and the implementation.

MINI-PROJECT 2 150 PTS

http://www.cs.cmu.edu/~15414//assignments.html
http://www.cs.cmu.edu/~15414//assignments.html


Decision Procedures MP2.2

The Code

In each problem, we provide some suggested module outlines, but your submitted modules may
be different. For example, where we say ‘let’ it may actually be ‘let rec’, or ‘predicate’, etc.
However, you cannot make any of the main functions for each task pure (i.e., you cannot use
‘function‘). You may modify the order of the functions or provide auxiliary types and functions.
You may also change the type definitions or types of the function, but in this case, you should
justify the change in your writeup. We recommended your functions to raise exceptions for con-
venience since this would make it easier to stop once the condition was met. However, depending
on your implementation you may want to return a value instead of raising an exception. We leave
this choice up to you. Note that you should not write axioms for this assignment.

The Writeup (20 pts)

The writeup should consist of the following sections:

1. Executive Summary. Which problem did you solve? Did you manage to write and verify all
functions? If not, where did the code or verification fall short? Which were the key decisions
you had to make? What ended up being the most difficult and the easiest parts? What did
you find were the best provers for your problem? What did you learn from the effort?

2. Code Walk. Explain the relevant or nontrivial parts of the specification or code. Point out
issues or alternatives, taken or abandoned. Quoting some code is helpful, but avoid “core
dumps.” Basically, put yourself into the shoes of a professor or TA wanting to understand
your submission (and, incidentally, grade it).

3. Recommendations. What would you change in the assignment?

Depending on how much code is quoted, we expect the writeup to consist of about 3-5 pages in
the lecture notes style.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file mp2.zip to MP2 Checkpoint (Code) for the checkpoint and to MP2 Final
(Code) for the final handin. We will be looking for files sat.mlw. Use make handin to create
the handin file.

• Submit a PDF containing your final writeup to MP2 Final (Written). There is no checkpoint
for the written portion of the assingment. You may use the file mp2-sol.tex as a template
and submit mp2-sol.pdf. Use make sol to create the writeup file.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the writeup to be typeset in LaTeX, but as long as you hand in a readable PDF with
your solutions it is not a requirement. We package the assignment source mp2.tex and a solution
template mp2-sol.tex in the handout to get you started on this.

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.3

1 SAT Solver

A SAT solver uses a decision procedure to establish the satisfiability of a propositional formula.
The goal of this project is to implement a SAT solver based on DPLL and unit propagation that
takes a formula in conjunctive normal form as an input and decides whether or not it is satisfiable
by enumerating every possible valuation of its variables.

A reminder on DPLL and unit propagation. We define a partial valuation as a partial function
from variable identifiers to booleans. A variable that is not mapped to a value is said to be unas-
signed. Besides, a literal xi or ¬xi is said to be unassigned if and only if xi is unassigned. Given a
partial valuation, a clause is said to be

• satisfied if one or more of its literals are satisfied

• conflicting if all its literals are assigned but not satisfied

• unit if it is not satisfied and all but one of its literals are assigned

• unresolved otherwise.

The DPLL algorithm enhances a naive backtracking search algorithm by implementing an opti-
mization called unit propagation: if a clause becomes unit during the search process, it can only be
satisfied by making its unique unassigned literal true and so no branching is necessary. In prac-
tice, this rule often applies in cascade, which can reduce the search space greatly. An example run
of the DPLL algorithm is shown Figure 1.

F =

C0︷ ︸︸ ︷
(x2 ∨ x3) ∧

C1︷ ︸︸ ︷
(¬x1 ∨ ¬x3) ∧

C2︷ ︸︸ ︷
(¬x1 ∨ ¬x2 ∨ x3) ∧

C3︷ ︸︸ ︷
(x0 ∨ x1 ∨ ¬x3) ∧

C4︷ ︸︸ ︷
(¬x0 ∨ x1 ∨ x3)

Step Partial valuation
Start with an empty partial valuation. {}
Decide x0. {x0 7→ true}

Decide x1. {x0 7→ true, x1 7→ true}
Propagate ¬x3 from unit clause C1. {x0 7→ true, x1 7→ true, x3 7→ false}
Propagate x2 from C0. {x0 7→ true, x1 7→ true, x3 7→ false, x2 7→ true}
Clause C2 is conflicting. Backtracking. {x0 7→ true}

Decide ¬x1. {x0 7→ true, x1 7→ false}
Propagate x3 from C4. {x0 7→ true, x1 7→ false, x3 7→ true}
Every clause is satisfied: F is satisfiable. {x0 7→ true, x1 7→ false, x3 7→ true, x2 7→ ∗}

Figure 1: Unit propagation in action

More details about the DPLL algorithm and unit propagation are available in Lecture 16 notes.

MINI-PROJECT 2 150 PTS

https://www.cs.cmu.edu/~15414/lectures/16-satdpll.pdf


Decision Procedures MP2.4

1.1 SAT solver with partial valuations (Checkpoint: 70 pts)

In Assignment 5, you specified and implemented some simple operations that can be performed
over formulas in CNF. In that assignment you considered complete valuations, however, in prac-
tice a SAT solver uses partial valuations. In this project, we will start by considering the same
types as before. You may reuse any code from Assignment 5. All code that you write for the
checkpoint should be in the module Sat.

1 type var = int

2 type lit = { var : var ; sign : bool }

3 type clause = list lit

4 type cnf = { clauses : array clause ; nvars : int }

5 type valuation = array bool

To make it easier for this assignment, we provide in the code template the data structure invari-
ants for the type cnf as well as basic predicates (valid valuation, clause sat with, sat with,
and unsat). We recommend using these predicates for your specifications.

Partial valuations. A variable in a partial valuation can take values True or False if it is assigned
a value, or None if is unassigned. A complete valuations relates a with partial valuation as follows.
A partial valuation is said to be compatible with a valuation ρ if both agree on every variable which
is assigned by p. In particular, an empty partial valuation is compatible with any valuation.

1 type pval = array (option bool)

2

3 predicate compatible (pval : pval) (rho : valuation) =

4 forall i:int, b:bool. 0 <= i < length pval ->

5 pval[i] = Some b -> rho[i] = b

Task 1 (10 pts). A partial valuation that satisfies a CNF formula can be extended to a complete
valuation by assigning the unassigned variables to any truth value. Implement, specify and verify
a function extract_sat_valuation that given a partial valuation pval that satisfies the formula
cnf returns a complete valuation that also satisfies the formula cnf.

1 let extract_sat_valuation (pval : pval) (ghost cnf : cnf) : valuation

Task 2 (10 pts). Implement, specify and verify a function partial_eval_clause that takes a partial
valuation p along with a clause C as its arguments and returns:

• [Satisfied] if and only if p satisfies C

• [Conflicting] if and only if p and C are conflicting

• [Unresolved] in every other case.

This corresponds to the following type and function definition:

1 type clause_status =

2 | Satisfied

3 | Conflicting

4 | Unresolved

5

6 let rec partial_eval_clause (p : pval) (c : clause) : clause_status

MINI-PROJECT 2 150 PTS

https://www.cs.cmu.edu/~15414/assignments/asst5.pdf


Decision Procedures MP2.5

Note that your specification only needs to prove implications and not equivalences. For in-
stance, you only need to prove that if the result is something then that implies something else. For
instance:

1 ensures { result = Satisfied -> ... }

To make writing the specification easier for the Unresolved case, you can write a weaker spec-
ification that does not need to be as precise as the definition. In particular, you can just ensure that
when you return Unresolved the clause contains an unassigned literal. Note that this simplifica-
tion could lead to an implementation that would mark a clause as Unresolved when it is already
Satisfied. However, this would not be problematic for the correctness of sat since eventually
the clause would be marked as Satisfied. This happens in practice since SAT solvers do not keep
track of the status of a clause and only track if a clause is conflicting (requires backtracking) or unit
(requires propagation).

Task 3 (10 pts). Implement, specify and verify a function partial_eval_cnf that takes a partial
valuation p along with a CNF formula cnf as its arguments and returns:

• [Sat] if and only if p satisfies every clause of cnf . In this case, cnf is true for every valuation
that is compatible with p and the search can stop.

• [Conflict] if p is conflicting with at least one clause of cnf . In this case, cnf is false for every
valuation that is compatible with p and backtracking is needed.

• [Other] in every other case.

Your partial eval cnf function should raise an exception Conflict found when a conflict is
found. You do not need to find all conflicts and can return an exception in the first conflict you
find. This corresponds to the following type and function definition:

1 exception Conflict_found

2

3 type cnf_status =

4 | Sat

5 | Conflict

6 | Other

7

8 let partial_eval_cnf (p : pval) (cnf : cnf) : cnf_status

Similarly to Task 2, your specification only needs to prove implications and not equivalences.

Task 4 (5 pts). Implement, specify and verify a backtrack function. Recall that in the DPLL al-
gorithm, when a conflict arises during search, one has to backtrack before the last decision point.
A naive way to do so would be to create a full copy of the current partial valuation every time a
choice is made but this would be terribly inefficient. A better alternative is to maintain a list of
every variable that has been assigned since the last decision point and to use this list as a reference
for backtracking.

Let p and p′ two partial valuations and l a list of variables. We say that l is a delta from p to p′

if p and p′ agree outside of l and the variables of l are unassigned in p. This can be formalized as
follows:

1 predicate delta (diff : list var) (pval pval’ : pval) =

2 (length pval = length pval’) /\

3 (forall v:var. mem v diff -> 0<=v< length pval /\ not (assigned pval v)) /\

4 (forall v:var. 0<=v< length pval -> not (mem v diff) -> pval[v] = pval’[v])

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.6

Then, we can define a function backtrack that restores an older version of a partial valuation
given a delta from this older version to the current one:

1 let rec backtrack (diff : list var) (pval : pval) (ghost old_pval : pval)

Note that old_pval is a ghost argument, which means that it will be eliminated during compila-
tion. Therefore, it cannot be used in the body of backtrack but only in its specification. However,
as opposed to diff and pval, it can be instantiated with ghost code.

Task 5 (5 pts). Implement, specify, and verify a function set_value that takes as its arguments an
unassigned literal l and the current partial valuation p. It updates p by setting literal l to true.
Besides:

• It raises a Sat_found exception in case the CNF becomes satisfied.

• It returns a tuple whose first component is a boolean that is true if and only if a conflict was
reached and whose second component is the delta of p (in this case since only one variable
is assigned the delta will correspond to the variable l.var).

1 exception Sat_found

2

3 let set_value (l : lit) (pval : pval) (cnf : cnf) : (bool, list var)

Note that set value returns a list var but this list will only contain one element. However,
we suggest this signature so that it will be easier to change your code from the checkpoint to
the final submission. Similarly to the other tasks, you only need to prove implications in your
contracts.

Task 6 (30). Implement, specify, and verify a function sat that uses partial valuations and puts all
the previous pieces together to prove the satisfiability of a propositional formula. In particular,
this function should satisfy the following contract.

1 let sat (cnf : cnf) : option valuation =

2 ensures { forall rho:valuation. result = Some rho -> sat_with rho cnf }

3 ensures { result = None -> unsat cnf }

Hints: Since this project is harder to fully verify, we provide here some hints that may be
helpful for you.

When writing your specification about a formula being satisfiable, you will need to relate a
partial valuation with a formula being satisfied. The following predicate (or something similar)
may be useful for your tasks:

1 predicate sat_with_pval (pval : pval) (cnf : cnf) =

2 forall rho:valuation. compatible pval rho -> sat_with rho cnf

When writing the specifications for the partial eval cnf function we do not recommend to
take the definitions and transform them directly into predicates as below.

1 predicate cnf_satisfied (pval : pval) (cnf : cnf) =

2 forall i. 0 <= i < length cnf.clauses -> clause_satisfied pval cnf.clauses[i]

3

4 predicate cnf_conflicting (pval : pval) (cnf : cnf) =

5 exists i. 0 <= i < length cnf.clauses /\ clause_conflicting pval cnf.clauses[i

]}

6 ...

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.7

Instead, you should write these predicates using the sat with predicate (or similar). Note
that the specification of sat relies on the predicate sat with. If you write your other definitions
without using this predicate then you would need to write many auxiliary lemmas to help the
provers understand the connection between sat with and those definitions.

1.2 SAT solver with unit propagation (Final Submission, 60 pts)

We now extend the previous implementation of the SAT solver with unit propagation. This will
allow your solver to be more efficient since it can backtrack earlier because it may find conflicts
earlier when propagating unit literals. All code that you write from this point forward should be
in the module UnitSat. You can copy the previous functions before doing the modifications that
are required below.

Task 7 (5 pts). To perform unit propagation, we need to capture the notion of unit clause. Mod-
ify and verify the function partial_eval_clause when considering an extension of the type
clause status that includes Unit lit, i.e. that returns:

• [Unit l] if c is a unit clause with unassigned literal l (for partial valuation p)

The updated type of clause status is:
1 type clause_status =

2 | Satisfied

3 | Conflicting

4 | Unit lit

5 | Unresolved

Task 8 (5 pts). Modify and verify the function partial_eval_cnf to consider unit clauses, i.e.:

• [Unit clause l] only if cnf admits a unit clause whose unassigned literal is l. If cnf ad-
mits more than one unit clause, which one is featured in the argument of Unit clause is
unspecified.

Your partial eval cnf function should raise an exception Unit found when a unit clause is
found. You do not need to find all unit clauses and can return an exception in the first unit clause
you find (even though there may be conflicting clauses in the formula). The updated type for
cnf_status is:

1 exception Conflict_found

2 exception Unit_found lit

3

4 type cnf_status =

5 | Sat

6 | Conflict

7 | Unit_clause lit

8 | Other

The Other case is not very interesting since it will not affect the correctness of the algorithm
as long as you ensure that when the valuation is complete the result can only be either Sat or
Conflict. Therefore, we allow you to weaken the specification of Other and write whatever you
think it is suitable.

Task 9 (40 pts). Specify, implement and verify a function set_and_propagate with the the follow-
ing signature:

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.8

1 let rec set_and_propagate (l : lit) (pval : pval) (cnf : cnf) :

2 (bool, list var)

This function takes as its arguments an unassigned literal l and the current partial valuation
p. It updates p by setting literal l to true and then recursively performing unit propagation until
a conflict is reached or no unit clause remains. Even though your implementation must run this
procedure until fix point, you do not need to write a specification that guarantees this fix point, i.e.
your specification does not need to prove that when you terminate there are no more unit clauses.
Besides:

• It raises a Sat_found exception in case the CNF becomes satisfied.

• It returns a tuple whose first component is a boolean that is true if and only if a conflict was
reached and whose second component is the delta of p (the list of every variable that was
assigned during the call to set_and_propagate).

To go back to the example of Figure 1, calling set and propagate for literal x1 and with pval =
{x0 7→ true} updates pval to {x0 7→ true, x1 7→ true, x3 7→ false, x2 7→ true} and returns the
tuple (true, [2, 3, 1]).

Proving termination. In the template, you will find a lemma numof decreases that may be use-
ful for proving termination of the unit propagation procedure. This lemma states that when you
modify an array by updating a single cell from a value v to a different value, the number of oc-
currences of v in this array decreases by one. To count the number of occurrences of v in an array,
you can use the provided function total numof.

1 function total_numof (t : array (option bool)) (v : option bool) : int =

2 numof t v 0 (length t)

Because numof is defined by a set of axioms, numof and total_numof cannot be used in code
and must only appear in annotations. Note that total_numof is only needed to prove the termi-
nation of the set and propagate function and it is not required for the checkpoint.

Task 10 (10 pts). Modify and verify the sat function to call set_and_propagate and the modified
functions above. Note that the function set_and_propagate will replace the previous function
set_value in your new implementation of your SAT solver.

The signature of sat should remain the same as before:

1 let sat (cnf : cnf) : option valuation =

2 ensures { forall rho:valuation. result = Some rho -> sat_with rho cnf }

3 ensures { result = None -> unsat cnf }

1.3 Writeup (Final Submission, 20 pts)

Task 11 (20 pts). Writeup, to be handed in separately as file mp2-sol.pdf.

MINI-PROJECT 2 150 PTS



Decision Procedures MP2.9

2 Testing

Even though you will be verifying your sat function, writing a correct implementation can be
challenging. Therefore, you may want to test that your function is producing the correct output
(sat/unsat) for your implementation.

Testing the algorithm and making up CNF formulas can be tedious in Why3. We provide a
test module with 10 formulas (5 satisfiable and 5 unsatisfiable).

You can execute the test module for the checkpoint (module Sat) as follows:

1 why3 -L . execute test.mlw --use=" TestSat" ’all()’

A similar command can also be executed for the final submission (module UnitSat):

1 why3 -L . execute test.mlw --use=" TestUnitSat" ’all()’

These commands print the number of “correct” answers. The default implementation in the
template always returns unsatisfiable and if you run it you should get the following output:

1 result: int = 5

2 globals: <none >

After you implemented the sat function, you should expect that number to be 10 if your
implementation is correct:

1 result: int = 10

2 globals: <none >

Running all test cases can take a few seconds to run (e.g., the Sat version takes around 10
seconds on my local machine and the UnitSat around 4 seconds). Note that just because you can
pass these 10 test cases does not mean the implementation is correct and that is why we want to
verify the code so that we can guarantee that for any CNF formula our SAT solver will return the
correct answer.

MINI-PROJECT 2 150 PTS


	SAT Solver
	SAT solver with partial valuations (Checkpoint: 70 pts)
	SAT solver with unit propagation (Final Submission, 60 pts)
	Writeup (Final Submission, 20 pts)

	Testing

