Assignment 6
Logic’s Labyrinth: Navigating Decisions

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Friday, March 29, 2024
75 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

® Submit the file asst6.zip to Assignment 6 (Code). You can generate this file by running
make handin. This will include your solution ubarray.mlw and the proof session in ubarray/.

® Submit a PDF containing your answers to the written questions to Assignment 6 (Written).
You may use the file asst6-sol.tex as a template and submit asst6-sol.pdf. You can
generate this file by running make sol (assuming you have pdflatex in your system).

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst6.tex and a solution template asst6-sol.tex in the handout to get you started on this.

ASSIGNMENT 6 DUE 23:59PM, FRIDAY, MARCH 29, 2024
75 PTS


http://www.cs.cmu.edu/~15414/assignments.html

Logic’s Labyrinth: Navigating Decisions HW6.2

1 Propagations and Conflicts (20 pts)
Considering the following propositional formula in CNF:

—x1 VX9V X3 4
-z Voxg Voxg Oy
x1V xo V —xsg Cs

x1 VIV s Cy
—x1 VXV I3 Cs
x1 VIV Iy Cs
-1V oz Vs Cr
x1V xo Vs Cy

Task 1 (20 pts). Assume that the DPLL algorithm already started and that we know that the for-
mula does not have a solution with x; assigned to true. Continue the DPLL algorithm with clause
learning, starting with the decision that z; is assigned false, i.e. “Decide —z1”. The DPLL algo-
rithm should terminate with either satisfiable or unsatisfiable. Note that if you need to backtrack
to 21 then you would show that the formula is unsatisfiable. You should write down the steps of
your evaluation in the following form:

(1) Decide p

(2) Unit propagate ¢ from clause C
(3) Decide —r

(4) Unit propagate s from clause C
(5) Conflicted clause (4

(6) Backtrack to r

(7) Learn conflict clause Cg = —-pV r
(8) Unit propagate r from clause Cy
o) ..

When reaching a conflict, you must learn a clause and show how you derive it from this conflict
by either showing a sequence of resolution steps or drawing the implication graph and a possible
separating cut. Please refer to Lecture 16 on ways to generate conflict clauses.

2 Congruence closure (15 pts)

Task 2 (15 pts). Use the congruence closure algorithm for T to determine the satisfiability of the
following ¥ g-formulae. Please refer to Lecture 17 (page 7) for details on the algorithm.

L f(g(x)) =g(f(@) A flg(f() =2 A fly) =2 Ag(f(x)) #2
2. f(f(f(a)) = f(a) A f(f(a)) =aA fla) #a

ASSIGNMENT 6 DUE 23:59PM, FRIDAY, MARCH 29, 2024
75 PTS


https://www.cs.cmu.edu/~15414/lectures/16-satdpll.pdf
https://www.cs.cmu.edu/~15414/lectures/17-smt-theories.pdf

Logic’s Labyrinth: Navigating Decisions HWe.3

3 Unbounded Arrays (40 pts)

In this problem we explore the use of verification to certify resource bounds using amortized
analysis. We also revisit data structure invariants, ghosts, and illustrate how to handle data that
admit a null value.

An unbounded array has constant time set and get operations, just like ordinary arrays, but we
can also extend their domain by adding elements at the end or shrink their domain by removing
elements from the end. Moreover, we specify that add and remove should have constant-time
amortized cost. We fix the cost model by specifying

A write operation to an array requires one unit of work; all other operations are free.

You can find a description of unbounded arrays and their amortized analysis at 11-ubarrays.pdf
from 15-122 Principles of Imperative Computation.
In WhyML we represent an unbounded array with

type uba ’a = { mutable size : int ;
2 mutable limit : int ;
3 mutable data : array (option ’a) ;
4 mutable ghost potential : int }

The data array contains elements Some x in its domain but may also have some unused elements.
The size field represents the current domain of the unbounded array. We can apply get and set
to any index 0 < i < size. 1limit is the actual length of the underlying data array that has been
allocated, with elements size < ¢ < limit being reserved for expansion of the domain.

The ghost field potential represents the available potential (or number of “tokens”) in the
data structure, which must always remain nonnegative. According to our cost model, each token
permits one array write operation. Each operation that entails a write, namely set, add, and rem
is given a certain amount of potential. Any potential not immediately used is stored in the ghost
tield for later use. The stored potential is necessary to copy the array content whenever a new
underlying data array is allocated, which happens when the domain becomes too large or too
small. Further specifics are given with the operations below.

Implement the operations on unbounded arrays according to the following specs.

(i) new (size : int) (default : ’a) : uba ’a
Allocate and return a new unbounded array with initial domain size size and limit 2xsize
(or 1 when size is 0). The array should be initialized with the given default element. Allo-
cation incurs no cost in our model.

(ii) len (u : uba ’a) : int
Return the current size of the domain of «.

(iii) get (u : uba ’a) (i : int) : ’a
Get the element at index 7 of .

(iv) set (u : uba ’a) (i : int) (x : ’a) (ghost p : int)
Set the element at index ¢ of u to be x. This requires 1 token which should be passed as p.

(v) add (u : uba ’a) (x : ’a) (ghost p : int)
Add a new element at the end of u, expanding it domain. This requires 3 tokens: 1 to perform

ASSIGNMENT 6 DUE 23:59PM, FRIDAY, MARCH 29, 2024
75 PTS


https://www.cs.cmu.edu/~15414/misc/11-ubarrays.pdf

Logic’s Labyrinth: Navigating Decisions HW6.4

the write, and 2 to save. If adding an element fills the array completely, double the length of
the array and copy the elements in the domain to the new array.

(vi) rem (u : uba ’a) (ghost p : int) : ’a

Remove an element from the end of u, shrinking its domain. This costs 2 tokens: 1 to over-
write the element to be None and 1 to save. When the domain is only one fourth of the length
of the array or smaller, cut the length of the array in half and copy the elements in the domain
to the new array. A precondition should require that rem cannot be called on an unbounded
array with empty domain.

In order to implement the cost model, every array write operation is followed by a decre-

ment of the potential. Also, each function that receives tokens adds them to the potential of the
unbounded array. As an example, we show the (incompletely specified) set function.

1

D)

6

let set (u : uba ’a) (i : int) (x : ’a) (ghost p : int) =

requires { 0 <= i < u.size } (¥ 4 must be inm domain *)

requires { p = 1 } (¥ amortized cost of ’set’ 4s 1 *)
500 (¥ more contracts as needed *)
ghost (u.potential <- u.potential + p) ; (¥ store received potential *)
u.datal[i] <- Some x ;

ghost (u.potential <- u.potential - 1) (¥ pay for write *)

The data structure invariants are simpler if the array can only be expanded but not shrunk.

We therefore recommend the following sequence of tasks, even if you should hand in just one file
ubarray.mlw at the end.

Task 3 (5 pts). Specify the data structure invariants of unbounded arrays, including the require-
ment that potential remain nonnegative. For this task, you may restrict attention to domain exten-
sion with the add operation and ignore rem.

Task 4 (25 pts). Implement and verify the new, len, get, set, and add operations (5 pts each).
Verification of contracts should guarantee the intended meaning of each operation and, together
with the data structure invariants, the correct amortized cost of each operation.

Task 5 (10 pts). Implement the rem operation and update the data structure invariants to guarantee
the correctness of the amortized analysis.

ASSIGNMENT 6 DUE 23:59PM, FRIDAY, MARCH 29, 2024

75 PTS



	Propagations and Conflicts (20 pts)
	Congruence closure (15 pts)
	Unbounded Arrays (40 pts)

