Assignment 1
Variations on a Theme

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Friday, February 2, 2024
70 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

Working With Why3

Before you begin this assignment, you will need to install Why3 and the relevant provers. To do
so, please follow the installation instructions on the course website (https://www.cs.cmu.edu/
~15414/misc/installation.pdf).

To help you out with Why3, we’ve provided some useful commands below:

¢ To verify using the command line, run why3 prove -P <prover> <filename>.mlw. This is
useful for simple programs where more fine-grained control over the provers is unnecessary,
as well as for intermediate checking. However, your final submission should include proof
sessions as created by the IDE.

¢ To open the Why3 IDE, run why3 ide <filename>.mlw.

— When you attempt to prove the goals in a file <filename>.mlw using the IDE, a folder
called <filename> will be created, containing a proof session. Make sure that you always
save the current proof session when you exit the IDE. To check your session after the
fact, you can run the following two commands with version 1.4.0 of Why?3:

why3 replay <filename> # should indicate that session is okay
why3 session info --stats <filename> # prints a summary of the goals

If you are using version 1.7.0, then you should run the following two commands:

why3 replay <filename> # should indicate that session is okay
prints proof statistics for each given session
why3 session info --session-stats <filename>

— Although it’s not possible to modify code directly from the IDE, if you make changes
in a different editor (VSCode, Emacs, etc.), you can refresh the IDE session with Ctrl+R.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, FEBRUARY 2, 2024
70 PTS

http://www.cs.cmu.edu/~15414/assignments.html
https://www.cs.cmu.edu/~15414/misc/installation.pdf
https://www.cs.cmu.edu/~15414/misc/installation.pdf

Variations on a Theme HW1.2

What To Hand In

You should hand in the file asst1.zip, which you can generate by running make. This will include
all of the raw mlw files, as well as the proof sessions created by the IDE.

1 Arrays and Maximum Element (10 pts)

In this exercise, we want you to specify, implement, and verify a function max_array that finds the
maximum element in an array of integers. You can write preconditions that assume that the array
is not empty.

module MaxArray

1
3 use int.Int

4 use array.Array

6 let max_array (t : array int) : int =
s end

Task 1 (10 pts). We provide an initial file maxarray.mlw with the function declaration. You should
modify this file and prove in Why3 that your implementation satisfies your specification. Your
specification should be complete, i.e., it should rule out any incorrect implementations of this
function. Note that if you prefer you can also change the function declaration to be recursive. You
can also use any of the functions defined in the standard library of Why3 for arrays.

2 Lists and Maximum Element (10 pts)

In this exercise, we want you to specify, implement, and verify a function max_list that finds the
maximum element in a list of integers. This is similar to the previous task but using lists instead
of arrays. Again, you can write preconditions that assume that the list is not empty.

I module MaxList

use int.Int
4 use list.List

6 let max_list (t : list int) : int =

s end

Task 2 (10 pts). We provide an initial file maxlist.mlw with the function declaration. You should
modify this file and prove in Why3 that your implementation satisfies your specification. Your
specification should be complete, i.e., it should rule out any incorrect implementations of this
function. Note that if you prefer you can also change the function declaration to be recursive. You
can also use any of the functions and predicates defined in the standard library of Why3 for lists.
For instance, the predicate 1ist.Mem may be useful to check membership of an element in a list.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, FEBRUARY 2, 2024
70 PTS

https://www.why3.org/stdlib/array.html
https://www.why3.org/stdlib/list.html

Variations on a Theme HW1.3

3 Relaxed Requirements (20 pts)

In this problem, we ask you to extend and modify the implementation of integer sets using bitvec-
tors that we briefly covered in lecture (and include in bitset.mlw).

Recall that a bset is a record consisting of an array a, a bound and a ghost field called model
containing a finite set of integers. If an integer 7 is in the bitset then a[i]=true. The bitset has
a bound on the number of elements we can add and it uses the ghost field to have an abstract
representation of the content of the array. Ghost variables, or ghost fields of records, can only be
used in other ghost computations and exist solely for the purpose of the verification. The data
structure invariants ensure that the relationship between the ghost field and the contents of the
array is consistent. Since these data structure invariants must be preserved every time we use
bitsets, we can write our contracts using the ghost model instead of referring to the underlying
implementation. More details can be found on the lecture notes on Arrays and Ghosts.

Task 3 (20 pts). Implement and verify a function test that checks if a given number z is in the
bitset s. This function should return false if the number is not in the bitset and true if the number
is in the bitset. Note that if a number z is not within bounds, then the function should return false.
The function test has the following function declaration and specification:

let test (x : int) (s : bset) : bool =

ensures { result <-> Fset.mem x s.model }
ensures { s.model == (old s.model) }

W N

You must use this specification for the test function, i.e., you should not add or modify any
additional posconditions or preconditions. Note that this functions does not assume that the z is
within bounds, i.e., it does not requires { 0 <= x < s.bound }. In order to verify this function,
you will need to extend the data structures invariants so that Why?3 is able to verify the Bitset
module.

Place your implementation in the file bitset.mlw.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, FEBRUARY 2, 2024
70 PTS

https://www.cs.cmu.edu/~15414/lectures/04-ghosts.pdf

Variations on a Theme HW1.4

4 Differentiate Discretely (30 pts)

Discrete differentiation is an operation that replaces a sequence such as 2, 5, 10, 17, 26 by the differ-
ences between consecutive elements, 3,5, 7,9, in this case. Iterating the process once more give us
2,2, 2. Even though we are not pursuing it in this problem, it is possible to determine a polynomial
representation of the sequence from the iterated finite differences (here: 2% + 2z + 2).
1 module Diff
2
use int.Int
4 use array.Array
use array. ArrayEq
6
7 let diffs (a : array int) : array int =
8 let diffs_in_place (a : array int) : unit =

Task 4 (15 pts). Write a verified functiondiffs (a : array int) : array int thatreturnsanew
array of differences between the elements of a, starting with a[1]—a[0], a[2] —a[1], etc. Your function
should not modify a itself, i.e. a at the end of the function should be equal to a at the beginning.
The length of the output array should be one less than the length of the input array.

Task 5 (15 pts). Write a verified function diffs_in_place (a : array int) : unit thatreplaces
each element in the array by the difference to the next one, without allocating a new array. The
last element can be arbitrary.

[Hint: for working with mutable arrays we found the alt-ergo and Z3 provers to be generally
more effective than CVC4. Note that to compare array contents, you should use array.ArrayEq
from the standard library. There may also be other functions or predicates that may be helpful for
concise specifications in the standard library for arrays.]

Place your implementations in the file diff.mlw.

Note! Be careful to ensure that your contracts cover ALL of the parts of the functions’ specifi-
cations from the task descriptions.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, FEBRUARY 2, 2024
70 PTS

https://www.why3.org/stdlib/array.html

	Arrays and Maximum Element (10 pts)
	Lists and Maximum Element (10 pts)
	Relaxed Requirements (20 pts)
	Differentiate Discretely (30 pts)

