Bug Catching: Automated Program Verification
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v

Refresh the page if a technical issue arises
» Communicate via chat, questions, or with emojis

» Or via raise your hand boxes

» Click on a box

» Unmute yourself

> Speak ...

» Click box again to disappear

» Breakout rooms
Office hours
Help Desk!

vy
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Instructors Teaching Assistants
FrarI;k Pfelnglr;lg May Li
(~ Parts ) Warwick Marangos
Matt Fredrikson \I_/c.)ng Psham

(~ Part IIl) Ictor Song
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Learning objectives

For this lecture
» What is this course about?
» What are the learning objectives for the course?
» How does it fit into the curriculum?
» How does the course work?

» Remember ...
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» April, 2014 OpenSSL announced critical
vulnerability in their implementation of the
Heartbeat Extension.
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» April, 2014 OpenSSL announced critical
vulnerability in their implementation of the
Heartbeat Extension.

» “The Heartbleed bug allows anyone on the
Internet to read the memory of the
systems protected by the vulnerable
versions of the OpenSSL software.”

» “...this allows attackers to eavesdrop on
communications, steal data directly from
the services and users and to impersonate
services and users.”

Matt Fredrikson Bug Catching 5/28



Heartbleed, explained

SERVER, ARE YOU STiLL THERE?
IFSQREPLY *pOTATO" (6 LETTERS).

ser Meg wants these 6 letters: POTATO.

-]

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

ser Meg wants these 6 letters: POTATO.

0
O
o

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

J

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

Hum...

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

SERVER, ARE YOU STiLL THERE?
IFS0,REPLY "HAT" (500 LETTERS),

/

Image source: Randall Munroe, xkcd.com
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Heartbleed, explained

ctions” page. Ewe (administrator) wan
ts to sat Berver key to "148)
350385347, about "

Meg wants these 500 letters: HAT.

Image source: Randall Munroe, xkcd.com
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Algorithms vs. code

int binarySearch(int key, int[] a, int n) {
int low = O0;
int high = n;

while (low < high) {
int mid = (low + high) / 2;

8 if (almid] == key) return mid; // key found
9 else if(almid] < key) {
10 low = mid + 1;
11 } else {
12 high = mid;
13 b
14 }
15 return -1; // key not found.
16 }
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Code matters

This is a correct binary search algorithm
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Code matters

This is a correct binary search algorithm
But what if low + high > 23! — 17

Then mid = (low + high) / 2 becomes negative
» Best case: ArrayIndexOutOfBoundsException
» Worst case: undefined (that is, arbitrary) behavior

Algorithm may be correct—but we run code, not algorithms.
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The culprit: mid = (low + high) / 2
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The culprit: mid = (low + high) / 2

Need to make sure we don't overflow at any point
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The culprit: mid = (low + high) / 2
Need to make sure we don't overflow at any point

Solution: mid = low + (high - low)/2
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1 int binarySearch(int key, int[] a, int n) {
2 int low = O0;
3 int high = n;

4
5 while (low < high) {

6 int mid = low + (high - low) / 2;

7

8 if (almid] == key) return mid; // key found
9 else if(almid] < key) {

10 low = mid + 1;

11 } else {

12 high = mid;

13 b

14 }

15 return -1; // key not found.

16 }
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int binarySearch(int key, int[] a, int n)
//@requires 0 <= n &8 n <= \length(4);

{

int low = O0;
int high = n;

while (low < high) {
int mid = low + (high - low) / 2;

if (a[mid] == key) return mid; // key found
else if(almid] < key) {
low = mid + 1;
} else {
high = mid;
¥

}
return -1; // key not found.
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int binarySearch(int key, int[] a, int n)
//@requires 0 <= n & n <= \length(a);

/*0@ensures (\result == -1 &8 !is_in(key, A, 0, n))
o [l (0 <= \result && \result < n
@ &6 A[\result] == key); @*/

int low = O0;
int high = n;

while (low < high) {
int mid = low + (high - low) / 2;

if (a[mid] == key) return mid; // key found
else if(almid] < key) {
low = mid + 1;
} else {
high = mid;
¥

}
return -1; // key not found.
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int binarySearch(int key, int[] a, int n)
//@requires 0 <= n &6 n <= \length(a);
//@requires is_sorted(a, 0, n);

/*@ensures (\result == -1 & !is_in(key, 4, 0, n))
@ /| (0 <= \result &8 \result < n
@ 88 A[\result] == key); 0*/

int low = O0;
int high = n;

while (low < high) {
int mid = low + (high - low) / 2;

if (almid] == key) return mid; // key found
else if(almid] < key) {
low = mid + 1;
} else {
high = mid;
}

}
return -1; // key not found.
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How do we know if it's correct?
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How do we know if it's correct?

One solution: testing
» Probably incomplete — uncertain answer

» Exhaustive testing not feasible

Another: code review
» Correctness definitely important, but not the only thing
» Humans are fallible, bugs are subtle
» What's the specification?

Better: prove correctness

Specification <= Implementation

» Specification must be precise (many subtleties)
» Meaning of code must be well-defined (many subtleties)

» Reasoning must be sound (many subtleties)
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Functional programming
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Functional programming

Correctness and proof is not limited to imperative programs!

1 (* balance : rbt -> rbt

> * balance T ==> R

3 * REQUIRES T ordered, bh(T) def,

4k either T is r/b

5k or T is black; and at most one child is almost r/b
6 * ENSURES R is r/b, bh(T) = bh(R), R ordered,
7 % set (T) = set(R)

8 %)

9o fun balance (Blk(Red(Red(a,x,b),y,c),z,d)) =
10 Red (Blk(a,x,b),y,Blk(c,z,d))

11 | balance (Blk(Red(a,x,Red(b,y,c)),z,d)) =
12 Red (Blk(a,x,b),y,Blk(c,z,d))

13 | balance (Blk(a,x,Red(b,y,Red(c,z,d)))) =
14 Red (Blk(a,x,b),y,Blk(c,z,d))

15 | balance (Blk(a,x,Red(Red(b,y,c),z,d))) =
16 Red (Blk(a,x,b),y,Blk(c,z,d))

17 | balance p = p
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Different traditions and techniques
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Functional programming: dependent types
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Different traditions and techniques

Functional programming: dependent types
» Proofs are expressed in programs (Agda)
» Proof tactics are expressed as programs (Coq)
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» Properties are expressed in contracts
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Different traditions and techniques

Functional programming: dependent types
» Proofs are expressed in programs (Agda)
» Proof tactics are expressed as programs (Coq)

Imperative programming: logical contracts
» Properties are expressed in contracts
» Reduce correctness to logical propositions (verification condition)

» Use automated theorem provers to prove VC

Why3 (this course) supports both!
» Functional and imperative code in WhyML
» Automated provers for VC (Z3, CVC, alt-ergo, ...)
» Interactive provers for VC (Coq)

We focus on automated proving
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Algorithmic approaches

Formal proofs are tedious

Automatic methods can:
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Algorithmic approaches

Formal proofs are tedious

Automatic methods can:
» Check our work
» Fill in low-level details
» Give diagnostic info
They usually cannot:
» Verify “everything” for us
» Generate specification, invariants

» Tell us how to fix bugs

This is what you will learn!

Image source: Daniel Kroening & Ofer

» Make use of these methods

Strichman, Decision Procedures

» How (and when) they work
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Course objectives
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Course objectives

» |dentify and formalize program correctness

» Understand language semantics

» Apply mathematical reasoning to program correctness

» Learn how to write correct software, from beginning to end
» Use automated tools that assist verifying your code

» Understand how verification tools work

» Make you better programmers
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Course outline
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» Gain intuitive understanding of language and methodology
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Course outline

Part |: Reasoning about programs: from 122 and 150 to 414
» Gain intuitive understanding of language and methodology

Part II: From inform to formal reasoning
» Specifying meaning of programs
» Specifying meaning of propositions

» Formal reasoning and its justification

Part Ill: Mechanized reasoning

» Techniques for automated proving
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Reasoning about correctness
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Reasoning about correctness

Functional Correctness
» Specification
» Proof
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Reasoning about correctness

Functional Correctness
» Specification
» Proof

Specify behavior with logic
» Declarative
» Precise

Systematic proof techniques
» Derived from semantics
» Exhaustive proof rules
» Automatable*

Matt Fredrikson Bug Catching 17 / 28



soning about correctnes

Functional Correctness

| 2 Specification 1 int[] array_copy(int[] A, int n)
» //@requires O <= n & n <= \length(A);
» Proof 3 //@ensures \length(\result) == n;

« {
. . . . int[] B = alloc_array(int, n);
Specify behavior with logic

» Declarative

6

7 for (int 1 = 0; 1 < n; i++)
s //@loop_invariant 0 <= i;

9

» Precise {
0w BIi] = A[i];
. . 1 }
Systematic proof techniques 1
. . 13 return B;
» Derived from semantics w}

» Exhaustive proof rules
» Automatable*
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soning about correctnes

Functional Correctness

| 2 Specification 1 int[] array_copy(int[] A, int n)
» //@requires O <= n & n <= \length(A);
» Proof 3 //@ensures \length(\result) == n;

« {
. . . . int[] B = alloc_array(int, n);
Specify behavior with logic

» Declarative

6

7 for (int 1 = 0; 1 < n; i++)
s //@loop_invariant 0 <= i;

9

» Precise {
0w BIi] = A[i];
. . 1 }
Systematic proof techniques 1
. . 13 return B;
» Derived from semantics w}

» Exhaustive proof rules

» Automatable* But ...
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Deductive verification platform
» Programming language (WhyML, derived from OCaml)
» Verification toolchain
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Deductive verification platform
» Programming language (WhyML, derived from OCaml)

» Verification toolchain

Rich specification language
» Pre- and post-conditions, loop invariants, assertions
» Pure mathematical functions

» Termination metrics
Programmer writes specification, partial annotations
Compiler proves correctness

When it works! (It's not quite like a type-checker ...)
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Automated verifiers

Systems that prove that programs match their specifications

Basic idea:

1. Translate programs into proof
obligations

2. Encode proof obligations as
satisfiability

3. Solve using a decision procedure
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Automated verifiers

Systems that prove that programs match their specifications

Problem is undecidable!

1. Prover needs “hints” from

programmer Basic idea:
2. Finding the right set of hints 1. Translate programs into proof
can be challenging obligations
- 2. Encode proof obligations as
Verifiers are complex systems satisfiability
> ! -dive i
We'll deep-dive into selected 3. Solve using a decision procedure

components

» Understand “big picture” for
the rest
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Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

» Specifications written in propositional
temporal logic

» Verification by exhaustive state space
Y P [ code ] [ spec ]
search
» Diagnostic counterexamples \ /
model
checker
\/ counter-

example
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Model Checking

Fully-automatic techniques for finding bugs (or proving their absence)

» Specifications written in propositional
temporal logic

> Z;r:ilﬁanon by exhaustive state space [ code ] [ spec ]
» Diagnostic counterexamples \v /

» No proofs! model

» Downside: “State explosion” checker

1070 atoms 10590000 giates / \

\/ counter-
example
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Model Checking

Clever ways of dealing with state explosion:
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Model Checking

Clever ways of dealing with state explosion:
» Partial order reduction
» Bounded model checking
» Symbolic representations
» Abstraction & refinement

Now widely used for bug-finding:
» Hardware, software, protocols, ...

Ed Clarke, 1945-2020
> Microsoft, Intel, Amazon, Google, NASA, Turing Award, 2007
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Model Checking

Clever ways of dealing with state explosion:
» Partial order reduction
» Bounded model checking
» Symbolic representations
» Abstraction & refinement

Now widely used for bug-finding:
» Hardware, software, protocols, ...

Ed Clarke, 1945-2020
> Microsoft, Intel, Amazon, Google, NASA, Turing Award, 2007

First developed this
course!
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6 assignments
done individually

Breakdown: 2 mini-projects
» 50% assignments pick from small menu
(written 4+ programming) can work with a partner

» 15% mini-project 1
» 15% mini-project 2
» 20% final exam

Participation:
» Come to lecture

» Answer questions
(in class and on Piazza!)

» Contribute to discussion
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Written parts of assignments

Written homeworks focus on theory and fundamental skills
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Written parts of assignments

Written homeworks focus on theory and fundamental skills

Grades are based on:
» Correctness of your answer

» How you present your reasoning

Strive for clarity & conciseness
» Show each step of your reasoning
» State your assumptions

» Answers without these — no points
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Programming parts of assignments

For the programming, you will:
» Implement some functionality (data structure or algorithm)
» Specify correctness for that functionality

» Use Why3 to prove it correct
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Programming parts of assignments

For the programming, you will:
» Implement some functionality (data structure or algorithm)
» Specify correctness for that functionality

» Use Why3 to prove it correct
Most important criterion is correctness.

Full points when you provide the following
» Correct implementation
» Correct specification
» Correct contracts

» Sufficient contracts for verification
Partial credit depending on how many of these you achieve

Clarity & conciseness is necessary for partial credit!
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Mini-projects are intended to build proficiency in:
» Writing good specifications
» Applying course principles to practice
» Making effective use of automated tools

» Writing useful & correct code
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Mini-projects are intended to build proficiency in:
» Writing good specifications
» Applying course principles to practice
» Making effective use of automated tools

» Writing useful & correct code

Gradual progression to sophistication:

1. Familiarize yourself with Why3
Implement and prove something
Work with more complex data structures

Implement and prove something really interesting

AR A

Optimize your implementation, still verified
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Late Policy

Late days
» 5 late days to use throughout the semester
» No more than 2 late days on any assignment

» Late days do not apply to mini-projects!
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Website: http://www.cs.cmu.edu/~15414
Course staff contact: Piazza

Lecture: Tuesdays & Thursdays, 12:20-1:40pm
» First two weeks on ohyay
» Afterwards: HH B131

Lecture Recordings (when remote): YouTube
Office Hours: TBD, schedule on website and course calendar soon

Assignments: Gradescope
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http://www.cs.cmu.edu/~15414

Let's prove something!

» Will sort you into breakout rooms

» Figure out mystery function does and how to prove it
» Will recall you to lecture hall

» Let's live-code!
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