
Practice Exam

15-414/614 Bug Catching: Automated Program Verification

Name:

Andrew ID:

Instructions

• This exam is closed-book.

• You have XX minutes to complete the exam.

• There are 7 problems on 12 pages.

• Read each problem carefully before attempting to solve it.

• State any assumptions that you make about a question.

• If you aren’t sure about an assumption, ask the course staff.

Max Score

Dynamic Logic 40

Resolution 30

SAT Solvers 30

SAT Encodings 20

Arrays and Uninterpreted Functions 25

Certificates 30

Temporal Logic 30

Total: 205

1

15-414/614 Final, page 2/12 Andrew ID:
1 Dynamic Logic (40 points)

This problem explores an alternative application of dynamic logic. Instead of reasoning about
imperative programs, we reason about programs for a simple stack machine.

Consider the following set of programs α, where we replace the usual assignment with several
stack operations.

Programs α, β ::= push k | dup | drop | dec | plus | times
| α ; β | α ∪ β | ?P | α∗

States s, t ::= k1 · · · kn
Formulas P ::= top k | true | false

¬P | P ∧Q | P → Q | ∀x. P | ∃x. P | P ∨Q | [α]P | ⟨α⟩P

States are just stacks of integers k1 · · · kn where k1 is the top of the stack. Formulas no longer
mention variables (which the language of programs does not have). Instead we have a single
new formula top k which holds if the top of the current stack is equal to the number k. The
quantifiers here range over integers, as usual, and we imagine we state additional arithmetic
properties.

We give the semantic definitions for the new constructs; all the other cases remain the same.

sJpush kKs′ iff s′ = k · s
sJdropKs′ iff s = k · s′ for some k
sJdupKs′ iff s = k · t and s′ = k · k · t for some k and t
sJdecKs′ iff s = k · t and s′ = (k − 1) · t for some k and t
sJminusKs′ iff s = k1 · k2 · t and s′ = (k1 − k2) · t for some k1, k2, and t
sJtimesKs′ iff s = k1 · k2 · t and s′ = (k1 × k2) · t for some k1, k2, and t

s |= top k iff s = k · t for some t

For example, for any stack s we will have

sJpush k ; timesK(k × k) · s

Task 110 Describe the meaning of the following program as a relation between an empty initial
stack and a final stack s′ by stating the possible forms of s′.

(·)Jpush k ; push i ; push j ; minus ; timesKs′ iff s′ = k × (j − i)× k

15-414/614 Final, page 3/12 Andrew ID:
Task 210 Describe the meaning of the following program as a relation between an initial stack just

containing n > 0 and a final stack s′, by stating the possible forms of s′.

nJ(?¬(top 1) ; dup ; dec)∗ ; ?top 1 ; times∗Ks′ iff s’ = n!

Task 320 Let f be a mathematical function from an integer to an integer. Write a formula computes f α
such that for every integer k and stack s we have k |= computes f α iff kJαKf(k) · s′ for
some s′. Your formula may mention f applied to an argument.

computes f α = ∀x. top x −→ ⟨α⟩top (f(x))

Prove the correctness of your definition

Solution: 10em

k |= computes f α iff k |= ∀x. top x −→ ⟨α⟩top (f(x))
iff k |= ⟨α⟩top (f(k)) (since k |= top x iff k = x)
iff there is an s such that kJαKs and s |= top f(k)
iff there is an s such that kJαKs and s = (f(k) · s′) for some s′

iff kJαKf(k) · s′ for some s′

15-414/614 Final, page 4/12 Andrew ID:
2 Resolution (30 points)
Task 115 A tautology is a clause that contains an atom p and also its negation ¬p. Let T be a set of

propositional clauses. Prove that if we delete all tautologies from T to obtain S , then T
and S have the same set of satisfying assignments.

Solution:

1. Let M |= T . This means M |= C for every C ∈ T and T ⊇ S. So M |= C for
every C ∈ S.

2. Let M |= S and T = S ∪ R where R consists entirely of tautologies. Then
M |= C for C ∈ R because every M satisfies every tautology. That’s because
either M |= p or M |= ¬p for the complementary pair or literals in C. Since also
M |= S we have M |= T .

15-414/614 Final, page 5/12 Andrew ID:
Task 215 We say clause C subsumes clause D if C ⊆ D and strictly subsumes clause D if C ⊊ D.

Let T be a set of propositional clauses. Let S be the result of deleting all clauses from T
that are strictly subsumed by other clauses in T . Prove that T and S have the same set of
satisfying assignments.

Solution: We have T = S∪R where every clause D ∈ R we have C ∈ S with C ⊋ D.

1. Assume we have M |= T so M |= S ∪R so M |= S .

2. Assume M |= S so M |= C for every C ∈ S. If C ⊊ D then also M |= D because
clauses are interpreted disjunctively. Therefore M |= R since every clause in R
is subsumed by one in S.

15-414/614 Final, page 6/12 Andrew ID:
3 SAT Solvers (30 points)
Task 120 DPLL learns new clauses that help it avoid entering conflicts similar to those it has already

encountered. Consider the following alternative method, which is easier to implement.

1. Let (l1, . . . , ln) be a partial assignment that results in a conflict.
2. Add the clause ¬l1 ∨ ¬l2 ∨ · · · ∨ ¬ln to the set of clauses as a learned clause.

(10 points) Is this approach sound, i.e. will adding these clauses potentially change the satisfia-
bility of the original formula? Justify your answer.

Solution: This approach is sound. Each clause that is learned in this way lists
a non-satisfying partial assignment. Let P be the formula given to the solver.
Because l1∧· · ·∧ln led to a conflict, P ∧l1∧· · ·∧ln is unsatisfiable, or equivalently,
¬(P ∧ l1 ∧ · · · ∧ ln) is valid. Applying DeMorgan’s gives us ¬P ∨ ¬l1 ∨ · · · ∨ ¬ln,
which is equivalent to P → (¬l1 ∨ · · · ∨ ¬ln).
Thus, if P is satisfiable, then any satisfying assignment will also satisfy ¬l1∨· · ·∨
¬ln. If P is not satisfiable, i.e. equivalent to ⊥, then ⊥ ∧ (¬l1 ∨ · · · ∨ ¬ln) is still
equivalent to ⊥, and thus unsatisfiable.

(10 points) Is this approach useful, i.e., will learning these clauses ever prevent the solver from
exploring an assignment that it wouldn’t have otherwise? If so, provide an example;
if not, explain why.

Solution: This approach is not especially useful, because even without clause-
learning, DPLL does not explore the same partial assignment more than once, so
adding these clauses will not cause the solver to avoid any conflicts that it has
not already seen.
The normal approach for learning clauses applies resolution, and produces clauses
that lead to unit-propagating an assignment that would not necessarily have been
decided next when backtracking. Suppose that backtracking happens on the vari-
able corresponding to li. The only assignment that will be “undone” by back-
tracking would be li, and this would result in propagating ¬li from the newly-
learned clause. This is redundant with DPLL’s normal behavior. Similarly, the
clause will not become unit again afterwards, because future assignments to a
variable xj in the clause will always satisfy ¬lj .

15-414/614 Final, page 7/12 Andrew ID:
Task 210 Given a partial interpretation a clause can be either satisfied, conflicting, unit or unre-

solved. For the partial interpretation I = {a,¬c, d} identify the status of each of the
following clauses:

(a ∨ ¬a) ≡ Satisfied

(¬a ∨ b ∨ c) ≡ Unit

(b ∨ ¬b ∨ ¬a) ≡ Satisfied

(¬d ∨ a) ≡ Satisfied

(¬a ∨ b ∨ e) ≡ Unresolved

15-414/614 Final, page 8/12 Andrew ID:
4 SAT Encodings (20 points)
Task 120 An isomorphism of undirected graphs G1 and G2 is a bijection f between their vertices

such that any two vertices v, v′ ∈ G1 are connected by a single edge if and only if f(v) and
f(v′) are connected by a single edge in G2. Describe how to encode this as a propositional
formula that is satisfiable if and only if G1 and G2 are isomorphic.

• Explain how many variables are required, and how the variables are interpreted.
• Likewise, explain which clauses are necessary and what they mean.

Demonstrate your encoding on the graphs shown below. Note that they are not isomor-
phic, because the second graph does not have a self-edge on the left node.

Solution: Assume that both graphs have the same number n of nodes; if they do not,
then output a trivial formula that is equivalent to false. The encoding then has n2

variables xij , which should be true whenever f(vi) = wj , where vi ∈ G1 and wj ∈ G2.
There are three groups of clauses.

1. Every vertex in G1 is mapped to some vertex in G2.

xi1 ∨ · · · ∨ xin for 0 < i ≤ n

2. Distinct vertices in G1 aren’t mapped to the same one in G2.

¬xi,k ∨ ¬xj,k for 0 < i, j, k ≤ n where i ̸= j

3. The mapping preserves connectivity.

¬xi,i′∨¬xj,j′ for 0 < i ≤ j ≤ n, 0 < i′ ̸= j′ ≤ nwhere (vi, vj) ∈ G1, (wi′ , wj′) ̸∈ G2

Note that for the third group, we have i ≤ j because the graphs are undirected,
so their edge relation is symmetric; adding clauses for symmetric (vi, vj) ∈ G1 is
redundant.
In the graphs above, let v1, w1 be the nodes on the left of each graph, and v2, w2 be the
nodes on the right of each graph. This gives:

x11 ∨ x12
x21 ∨ x22
¬x11 ∨ ¬x21
¬x12 ∨ ¬x22
¬x11 ∨ ¬x11 (simplifies to ¬x11)
¬x12 ∨ ¬x12 (simplifies to ¬x12)

Note that this is unsatisfiable, because the last two clauses conflict with the first.

15-414/614 Final, page 9/12 Andrew ID:
5 Arrays and Uninterpreted Functions (25 points)
Task 110 Provide a formula in the theory of equality and uninterpreted functions that is valid if an

only if the following formula in the theory of arrays is valid:

read (write a i (read b j)) j = x ∧ read b i ̸= x ∧ i = j

If you introduce any uninterpreted functions in your solution, explain what they corre-
spond to in the original formula.

Solution: First we remove the read-over-write terms by case-splitting on i = j and
i ̸= j. Because i = j is in the formula, we know that the latter case will be unsatisfi-
able, so we do not need to include it.

read b j = x ∧ read b i ̸= x ∧ i = j

Now we replace read b · terms with uninterpreted function applications f(·):

f(j) = x ∧ f(i) ̸= x ∧ i = j

Task 215 Compute the congruence closure of your solution for Task 1, and state whether the con-
gruence classes satisfy the equality and uninterpreted functions formula.

Solution: Start with the most granular set of congruence classes on the subterms
appearing in the formula (x, i, j, f(i), f(j)):

{{x}, {i}, {j}, {f(i)}, {f(j)}}

Then we account for the equalities listed in the formula:

{{x, f(j)}, {i, j}, {f(i)}}

And propagate congruences; i = j so f(i) = f(j), we must merge {x, f(j)} with
{f(i)}:

{{x, f(i), f(j)}, {i, j}}

There are no further congruences to propagate, so this is the closure. These classes do
not satisfy the formula that we started out with, because they contradict f(i) ̸= x.

15-414/614 Final, page 10/12 Andrew ID:
6 Certificates (30 points)

Consider the formula:

(¬p1 ∨ ¬p2)︸ ︷︷ ︸
C1

∧ (¬p2 ∨ p3)︸ ︷︷ ︸
C2

∧ (p1 ∨ ¬p3 ∨ ¬p5)︸ ︷︷ ︸
C3

∧ (¬p5 ∨ p2)︸ ︷︷ ︸
C4

∧ (p5 ∨ p2)︸ ︷︷ ︸
C5

∧ (p1 ∨ ¬p3 ∨ p5)︸ ︷︷ ︸
C6

Task 110 Which of the following are correct clausal certificates for this formula? Explain your
answer in terms of the reverse unit propagation property.

(5 points) [p5 ∨ p2,¬p5 ∨ p2,⊥]

Solution: We see that ¬(p5∨p2) unit-propagates to a conflict via C4 and C5. Like-
wise, conjoining p5 ∨ p2 and asserting ¬(¬p5 ∨ p2) leads to the same conflict via
unit propagation. However, adding both p5 ∨ p2 and ¬p5 ∨ p2 to C1-C6 does not
result in any unit propagations, so this is not a valid clausal certificate.
Generally, a valid clausal certificate will need to have a unit clause in the penul-
timate position (or redundantly, earlier in the certificate) in order to be valid.
Otherwise it will not be possible to unit-propagate to conflict after asserting ¬⊥.

(5 points) [¬p1,¬p2,⊥]

Solution: Asserting p1 unit-propagates ¬p2 from C1, which leads to a conflict on
C5 after propagating ¬p5 from C4. Adding ¬p1 and asserting p2 propagates p3
from C2, which then propagates ¬p5 from C3, and conflicts on C6. Finally, adding
¬p1 and ¬p2 to C1 - C6 will propagate ¬p5 from C4, which will conflict will C5.
Thus, this is a valid clausal certificate.

15-414/614 Final, page 11/12 Andrew ID:
Task 210 Recall that resolution certificates are composed of a list of proof steps, which are of the

form:
Step # : Assume C
Step # : Resolve C [Step #,Step #, . . .]

The Resolve steps give the result C of applying resolution on the sequence of clauses,
identified by step numbers, obtained at earlier steps. The last step should be ⊥.
Explain how to obtain a resolution certificate from a clausal certificate. That is, explain
how each step of the clausal proof corresponds to a sequence of resolution steps involving
clauses from the original formula, as well as earlier clauses in the certificate.

Solution: Each clause C in the clausal certificate corresponds to a resolution chain,
which can be obtained by asserting its negation, noting the clauses C1, . . . , Cn that it
makes unit (in the order that they become unit), and the clause C⊥ that is ultimately
conflicting. Then the resolution chain yielding C is C⊥ ▷◁ Cn ▷◁ · · · ▷◁ C1. This is
represented in the certificate as:

Step i : Assume C1
...
Step i+ n : Assume Cn

Step i+ n+ 1 : Assume C⊥
Step i+ n+ 2 : Resolve C [i+ n+ 1, i+ n, . . . , i]

Note that the Assume steps arise when Ci was a clause in the original formula; if
a Ci is a clause appearing earlier in the clausal certificate, then no Assume step is
needed, and the Resolve step can refer to the step number that appeared earlier in
the resolution certificate for that clause.
When the final step ⊥ of the clausal proof is checked, it will yield a similar chain
⊥ = C ′ = C ′

⊥ ▷◁ C ′
n′ ▷◁ · · · ▷◁ C ′

1, which will make the certificate a refutation.

Task 310 Provide a resolution certificate corresponding to the clausal certificate [p,⊥] on the fol-
lowing formula:

(p ∨ q)︸ ︷︷ ︸
C1

∧ (¬p ∨ q)︸ ︷︷ ︸
C2

∧ (¬r ∨ ¬q)︸ ︷︷ ︸
C3

∧ (r ∨ ¬q)︸ ︷︷ ︸
C4

Solution: Begin by noting the resolution chains: asserting ¬p yields p = C4 ▷◁ C3 ▷◁
C1, and then adding p yields ⊥ = C4 ▷◁ C3 ▷◁ C2 ▷◁ p.

Step 1 : Assume p ∨ q
Step 2 : Assume ¬r ∨ ¬q
Step 3 : Assume r ∨ ¬q
Step 4 : Resolve p [3, 2, 1]
Step 5 : Assume ¬p ∨ q
Step 6 : Resolve ⊥ [3, 2, 5, 4]

15-414/614 Final, page 12/12 Andrew ID:
7 Temporal Logic (30 points)
Task 115 Draw a Kripke structure that satisfies the formula A[aUAF b] ∧EX¬b.

Solution:

aab

Task 215 For each state in your answer to Task 1, label which of the formulas AF b, EX¬b, and
A[aUAF b] are satisfied. You may refer to them as P,Q, and R, respectively.

Solution: Let the initial state be w0, the state to the left of it w1, and the leftmost state
w2.

AF b w0, w1, w2

EX¬b w0

A[aUAF b] w0, w1, w2

