
Final Exam

15-414/614 Bug Catching: Automated Program Verification

Name:

Andrew ID:

Instructions

• You have 180 minutes to complete the exam.

• This exam is closed-book and closed-note.

• Read each problem carefully before attempting to solve it.

• State any assumptions that you make about a question.

• Write your Andrew ID at the top of each page.

• If you remove the staple, place the pages in the correct order when you hand the exam in.

Max Score

Dynamic Logic 40

Resolution 30

SAT Solving 25

Propositional Encodings 25

Congruence 20

Certificates 25

Temporal Logic 35

Total: 200

1

15-414/614 Final, page 2/12 Andrew ID:
1 Dynamic Logic (40 points)

This problem explores an alternative application of dynamic logic. Instead of reasoning about
imperative programs over a store, we reason about particular kinds of string-processing pro-
grams.

Consider the following set of programs α, where we replace the usual assignment x ← e with
the action “read c” that reads the character c from the input.

Programs α, β ::= read c | α ; β | α ∪ β | ?P | α∗

States w ::= c1 . . . cn
Formulas P,Q ::= equal w | true | false

¬p | P ∧Q | P → Q | P ∨Q | [α]P | 〈α〉P

States are just words formed from the characters of some alphabet, where ϵ denotes the empty
word. Formulas no longer mention variables (which the language of programs does not have).
Instead we have a single new formula equal w which holds if the current state is equal to the
word w. We give the semantic definitions for the new constructs; all the other cases remain
the same.

wJread cKw′ iff w = cw′

w |= equal w′ iff w = w′

For a more realistic language we would have other predicates than equal to reason about the
state of the computation. For the tasks below, we fix the alphabet to be {0, 1}.

Task 15 Write a program alt such that wJaltKϵ iff w = 010101 . . . 01 where

alt = (read 0 ; read 1)∗

Task 25 Write a program dbl such that wJdblKϵ iff in w, a 1 is followed by one or more 1s before
the next 0. For example, the relation should hold for w = 00 and w = 111011 but not for
w = 10 or w = 0001.

dbl = (read 0 ∪ (read 1 ; read 1 ; (read 1)∗))∗

Task 310 Write a formula “accepts α” such that w |= accepts α iff wJαKϵ
accepts α = 〈α〉 equal ϵ

Prove the correctness of your definition

Solution:
w |= accepts α iff w |= 〈α〉 equal ϵ

iff ∃w′. wJαKw′ ∧ w′ |= equal ϵ
iff ∃w′. wJαKw′ ∧ w′ = ϵ
iff wJαKϵ

15-414/614 Final, page 3/12 Andrew ID:
Task 410 Provide a translation prog(r) from regular expressions r to programs α such that w ∈ L(r)

iff w |= accepts (prog(r)). You can find the definition of the language L(r) generated by
regular expression r in the formula sheet.

prog(c) = read c

prog(r1 · r2) = prog(r1) ; prog(r2)

prog(1) = ?true

prog(r1 + r2) = prog(r1) ∪ prog(r2)

prog(0) = ?false

prog(r∗) = prog(r)∗

You do not need to prove your interpretation correct, except as required in the next task.

Task 510 Prove the correctness of your interpretation of prog(1). You may use the property you
proved in Task 3.

Solution:
w |= accepts (prog(1)) iff wJprog(1)Kϵ

iff wJ?trueKϵ
iff w = ϵ
iff w ∈ L(1)

15-414/614 Final, page 4/12 Andrew ID:
2 Resolution (30 points)

We like to think of a clause as a set of literals, that is, a clause does not contain any repeated
literals. If we instead think of it as a multiset of literals, that is, some literals may be repeated,
then the resolution rule might be stated in the form

p, C
¬p,D
C,D

where the comma represents multiset union. This means, for example, if p has n > 0 occur-
rences in C ′ and C ′ = (p, C), then p has n− 1 occurrences in C. Similarly, if q has i occurrences
in C and j occurrences in D, then q has i+ j occurrences in C,D.

Task 115 Prove that this form of resolution is still sound, that is, the inference preserves the set of
satisfying assignments.

Solution: Let M |= p, C and M |= ¬p,D. We have to show that M |= C,D. We
consider two cases:

1. M(p) = true. Then M |= p and M 6|= ¬p. Regardless of additional copies of
¬p in D, we therefore have M |= D. Hence also M |= C,D since the multiset is
interpreted disjunctively.

2. M(p) = false. Then M |= ¬p and M 6|= p. Regardless of additional copies of p
in C, we therefore have M |= C. Henc also M |= C,D.

15-414/614 Final, page 5/12 Andrew ID:
Task 215 Provide a counterexample showing that this form of resolution is incomplete. That is,

show a set of clauses that is unsatisfiable and prove that one cannot derive the empty
clause from it.

Solution: Consider clauses p, p and ¬p,¬p. We calculate:

p, p (C1)
¬p,¬p (C2)

p,¬p C3 = C1 ◃▹p C2

At this point we have C1 ◃▹p C3 = (p, p) = C1 and C3 ◃▹p C2 = (¬p,¬p) = C2 and,
finally C3 ◃▹p C3 = (p,¬p) = C3 so our collection of clauses is saturated without
deriving an empty clause.

15-414/614 Final, page 6/12 Andrew ID:
3 SAT Solving (25 points)
Task 110 Given a partial interpretation, a clause can be either satisfied, conflicting, unit or unre-

solved. Consider the formula:

(a ∨ b ∨ ¬c)︸ ︷︷ ︸
C1

∧ (¬a ∨ ¬b ∨ ¬c)︸ ︷︷ ︸
C2

∧ (¬a ∨ b ∨ c)︸ ︷︷ ︸
C3

∧ (¬b ∨ c)︸ ︷︷ ︸
C4

∧ (¬b ∨ ¬c)︸ ︷︷ ︸
C5

∧ (¬a ∨ ¬c)︸ ︷︷ ︸
C6

Identify a clause with each status for the partial assignments listed below.

Satisfied M = {a} C1

Conflicting M = {a, b,¬c} C4

Unit M = {a} C6

Unresolved M = {¬b, c} None. All clauses must be decided or unit when two variables are assigned.

Satisfied M = {b, c} C1

Task 215 For the following, consult the formula from the previous task. Which of the following
are valid examples of learned clauses that DPLL might generate on its search? Provide a
justification for your answer in each case.

(5 pts) ¬a ∨ b ∨ c

Solution: This is not a valid learned clause, because it appears in the CNF. It
is not the result of a resolution chain involving other clauses (it contains all the
variables), and it is not the negation of another clause.

(5 pts) ¬b

Solution: This is a valid learned clause, and would result from deciding c, which
would unit-propagate from C5, leading to conflict with C4. ¬b is the resolvent of
C4 and C5.

(5 pts) b

Solution: This is not a valid learned clause, because all assignments that have b
lead to conflicts stemming either from C4 or C5 (or, redundantly, C6).

15-414/614 Final, page 7/12 Andrew ID:
4 Propositional Encodings (25 points)
Task 115 A set with n elements can be partitioned into sets of size 2 if and only if 2 divides n.

Suppose that we wish to encode this as an instance of satisfiability with n2 propositional
variables xij , for 0 < i, j ≤ n. If xij is true in a satisfying assignment, then elements i and
j are in the same partition.
Complete the encoding by providing a set of disjunctive clauses.

• Your clauses should ensure that each element is grouped with at least one other, and
that no element is grouped with more than one other.

• Your encoding does not need to be minimal.

Solution: The encoding has n2 variables xij , for 0 < i, j ≤ n and 0 < j ≤ 2. If
variable xij is true, then the ith and jth elements of the set are assigned to the same
partition.
We need clauses which assert that each element is grouped with another or itself.

xi1 ∨ · · · ∨ xin for 0 < i ≤ n

And clauses which state that each element is grouped with exactly one other, not
including itself.

¬xij ∨ ¬xik for 0 < i, j, k ≤ n for j ≤ k

Note that the lax inequality is intentional, so that we end up with clauses ¬xii ∨ ¬xii.
Alternatively, we could make this a strict inequality and seperately assert ¬xii, or
modify the first set of clauses to exclude xii as a positive literal in each. Regardless
of which solution is chosen, the solution has to ensure that x11 = true, x22 = true, . . .
with all other variables false is not a satisfying assignment.

Task 210 Demonstrate your encoding for n = 2 by providing the necessary clauses.

Solution: Note that the only satisfying assignment is x12, x21.

x11 ∨ x12
x21 ∨ x22
¬x11 ∨ ¬x11
¬x11 ∨ ¬x12
¬x22 ∨ ¬x22
¬x21 ∨ ¬x22

15-414/614 Final, page 8/12 Andrew ID:
5 Congruence (20 points)

The congruence closure algorithm for deciding conjunctive formulas in the theory of equality
and uninterpreted functions first constructs a congruence relation, and then checks that it
demonstrates the formula’s satisfiability by comparing it against any negated equalities.

For each formula and relation (given by congruence classes) below, state whether the relation
is the congruence closure of the equalities given in the formula.

• If it is, then state whether the formula is satisfiable. Justify your answer in terms of the
congruence closure.

• If it is not, then identify at most one literal to add and at most one to remove for the given
relation to be the resulting formula’s congruence closure.

For example, given the formula x = f(y) ∧ f(x) 6= f(y), the relation {{x, y}, {f(x), f(y)}} is
not the congruence closure of the equality x = f(y). Removing x = f(y) and adding x = y
would yield this relation as the congruence closure.

Task 110 f(x, y) = f(y, x) ∧ x = f(x, y) ∧ f(f(x, y), y) 6= f(y, f(y, x))
Congruence classes: {{y}, {x, f(x, y), f(y, x), f(f(x, y), y), f(y, f(y, x)))}}

Solution: This is the congruence closure of the equalities in the formula. The formula
is not satisfiable because f(f(x, y), y) and f(y, f(y, x)) are related, but appear in a
negated equality literal in the formula.

Task 210 g(x) = y ∧ f(f(x)) = x ∧ f(f(f(x))) = x ∧ g(f(f(x))) 6= y
Congruence classes: {{f(f(x)), g(x), y}, {f(x)}, {g(f(f(x)))}, {f(f(f(x))), x}}

Solution: This is not the congruence closure of the equalities in the formula. Remov-
ing f(f(x)) = x and adding f(f(x)) = y (resulting in the formula below) would yield
this relation as the congruence closure.

g(x) = y ∧ f(f(x)) = y ∧ f(f(f(x))) = x ∧ g(f(f(x))) 6= y

15-414/614 Final, page 9/12 Andrew ID:
6 Certificates (25 points)

Suppose that given the following formula:

(a ∨ ¬b)︸ ︷︷ ︸
C1

∧ (¬a ∨ c ∨ ¬d)︸ ︷︷ ︸
C2

∧ (a ∨ c ∨ ¬d)︸ ︷︷ ︸
C3

∧ (¬c ∨ ¬e)︸ ︷︷ ︸
C4

∧ (¬c ∨ e)︸ ︷︷ ︸
C5

∧ (c ∨ d)︸ ︷︷ ︸
C6

DPLL produces the following trace:

Step Partial valuation
Start with an empty valuation. {}
Decide a. {a 7→ true}

Decide c. {a 7→ true, c 7→ true}
Propagate ¬e from unit clause C4. {a 7→ true, c 7→ true, e 7→ false}
C5 conflicts. Learn C7 = ¬c. Backtrack. {a 7→ true}

Propagate ¬c from unit clause C7. {a 7→ true, c 7→ false}
Propagate d from unit clause C6. {a 7→ true, c 7→ false, d 7→ true}
C2 conflicts. Learn C8 = ¬a. Backtrack. {}

Propagate ¬a from unit clause C8. {a 7→ false}
Propagate ¬c from unit clause C7. {a 7→ false, c 7→ false}
Propagate ¬d from unit clause C6. {a 7→ false, c 7→ false, d 7→ true}
C3 conflicts. Unsat

Task 110 Provide a clausal certificate for this trace. Recall that a clausal certificate for a formula P
is composed of a sequence of clauses [C1, C2, . . . , Cn = ⊥] with the property:

P ∧ C1 ∧ · · · ∧ Ci−1 ∧ ¬Ci unit propagates to ⊥, for all i ∈ {1, . . . , n}

Briefly explain how you obtained the clauses in this certificate.

Solution: The clausal certificate is [¬c,¬a,⊥]. This is a list of the clauses learned by
DPLL during its search, with ⊥ corresponding to the fact that its final unit propaga-
tion resolved to ⊥.

15-414/614 Final, page 10/12 Andrew ID:
Task 215 Provide a resolution certificate for this trace. Recall that resolution certificates are com-

posed of a list of proof steps, which are of the form:

Step # : Assume C
Step # : Resolve C [Step #,Step #, . . .]

The Resolve steps give the result C of applying resolution on the sequence of clauses,
identified by step numbers, obtained at earlier steps. The result of the last step should be
⊥.
Briefly describe how you obtained this certificate.

Solution: The following certificate reflects the steps taken by the solver in this trace:
first it learns ¬c by resolving C4 and C5, then ¬a by resolving C2, C6, and ¬c, and
finally conflicts on C3.

Step 1 : Assume C4

Step 2 : Assume C5

Step 3 : Resolve ¬c [21]
Step 4 : Assume C6

Step 5 : Assume C2

Step 6 : Resolve ¬a [543]
Step 7 : Assume C3

Step 8 : Resolve ⊥ [7643]

The fact that ¬c appears before ¬a in this certificate is not essential; however, refuta-
tions that do not contain derivations for these clauses do not correspond to this trace.

15-414/614 Final, page 11/12 Andrew ID:
7 Temporal Logic (35 points)
Task 120 Consider the computation structure given below. Determine whether it satisfies the fol-

lowing CTL formulas. If it does satisfy the formula provide a brief justification, if it does
not satisfy the formula provide a counterexample path to demonstrate the inconsistency.

a

b

a

ab

[10] AF (a ∧AXa)

Solution: Does not satisfy. The initial state does not satisfy a ∧ AX a because
there is a path to a b successor. The state to the left of the initial state does not
saitsfy a ∧ AX a because the next successor is b. So the counterexample path is
a a b b

[10] AGA[aU b]

Solution: Does satisfy. For every state, either b is true or a is true. Moreover, all
paths starting at the initial state must eventually satisfy b, either in the immediate
successor or the next after that. So aU b must be true.

15-414/614 Final, page 12/12 Andrew ID:
Task 215 While it may seem natural to think of the linear traces generated by a Kripke structure as

the canonical way to understand their corresponding computation, the possible branches
that the computation takes are not evident when considering only traces. CTL formulas
model the computation embodied in a Kripke structure in terms of trees obtained by
“unrolling” each path through the structure.
For example, the tree on the right corresponds to the structure on the left.

a b

a

a

a

a
...

b
...

b

a
...

b

a

a
...

b
...

In this problem, you will provide an example that illustrates the distinction between
CTL’s tree-based modeling of computation, and the linear behavior exhibited by its traces.
Draw a Kripke structure K with the following properties.

• All paths end with an infinite sequence of states satisfying a: for any path w0, w1, . . .
in K, there exists an i such that wj |= a for all j ≥ i.

• K does not satisfy AFAG a.

You may find it helpful to first draw a computation tree that satisfies these properties, but
this is not necessary for credit.

Solution:

a b a

Clearly, this solution is not unique. Any acceptable structure will need to have a self-
transition on a state with a, and from that state there will need to be a transition to a
state without a. It is essential that no path can indefinitely transition between a and
not a, as this would violate the first bullet of the question.

