Assignment 6
Having a (Bit) Blast

15-414: Bug Catching: Automated Program Verification

Due Thursday, March 31, 2022
75 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/s22/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

* Submit the file asst6.zip to Assignment 5 (Code). You can generate this file by running
make handin. This will include your solutions taocp.py, prng.py, and bmc. py.

® Submit a PDF containing your answers to the written questions to Assignment 6 (Written).
You may use the file asst6.tex as a template and submit asst6. pdf.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst6.tex with handout to get you started on this.

Useful Resources

The notes and live-coding examples for lectures 16 and 17 provide the primary background needed
to complete these problems. If you are unsure about how to implement your approach using the
73 API, please review Section 3 of lecture 17 before posting a question.

You may also find sections 2, 4, and 5 of the tutorial written by Nikolaj Bjorner, the lead devel-
oper of Z3, helpful for additional background and examples:

https:/ /theory.stanford.edu/ nikolaj/programmingz3.html
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Having a (Bit) Blast HW6.2

1 Identical Bits (25 pts)

The following problem was posed by Donald Knuth in The Art of Computer Programming, Volume 4
Fascicle 1: Bitwise Tricks and Technigues. Recall from Lecture 16 that & denotes bitwise exclusive-or.

J.H. Quick noted that ((z +2) ® 3) — 2 = ((x — 2) ® 3) + 2 for all z. Find all
constants a and b such that ((z + a) ®b) —a = ((x — a) ® b) + a is an identity.

(Problem 3.15, Page 53 [M26])

Task 1 (15 pts). Assuming that x,a and b are bit vectors of width 1 (¢ = 1), solve this problem
by bit-blasting the equation to propostitional logic, and solving for a and b. You may solve the
propositional formula however you like, including with a truth table or using a solver such as Z3,
but be sure to show the bit-blasted propositional formula, and explain how you derived it.

Hint: You may find the following propositional identity useful on the bit-blasted formula:

“(r @y (tr) Dy @ (y)

Task 2 (10 pts). Now assume that x, a and b are bit vectors of arbitrary width. Complete the func-
tion solve_identity in taocp.py.

1 def solve_identity(width: int) -> int:
2

a, b, x = BitVecs(’a b x’, width)

220

6 Replace the formula ‘identity ‘ below with your
7 encoding of the tdentity from Problem 1

APV

9 identity = ...

11 s = Solver ()
12 s.add (identity)

14 solutions = []

200
17 Now implement code to enumerate all solutions to your encoding,

18 adding each one to ‘solutions ¢

19 PIP )

20

21 return len(solutions)

Run your solution with £ = 1,2,3,4, ... (note that larger values of £ may take long to compute),
and conjecture a general solution to Knuth’s original problem: what are the constants a and b that
make the equation and identity?

Hint: if you don'’t feel that the number of solutions for a range of { provides enough information to form
a conjecture, try printing the solutions out for a few values and looking for a pattern.
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2 Cracking LCG (20 pts)

Pseudorandom numbers are important in many computing applications, especially so in those
related to security and cryptography: encryption keys, random nonces in networking protocols,
and other such quantities must be extremely difficult for an attacker to guess a-priori. For this
reason, secure implementations make use of pseudorandom number generators that are expressly
designed with this goal in mind.

For more casual applications that do not rely on randomness for security, a popular method for
generating pseudorandom numbers is the linear congruential generator (LCG), with a representative
implementation in C shown below.

| int rseed = O0;

5

3 void srand(int x) { rseed = x; }

inline int rand ()

6 {

7 rseed = rseed * 214013 + 2531011;
8 return (rseed >> 16) & Ox7FFFh;

9 }

In this problem, we will see why it is not advisable to use simple (but cheap!) generators like LCG
in secure applications.

Task 3 (15 points). Complete the function recover_previous in prng.py, a sketch of which is
shown in Figure 1. The purpose of this function is to take a sequence of observed outputs from
rand, which have been modulo-reduced by a given base, check whether the previous (unobserved)
output of rand is uniquely determined, and if so, return it.

For example, suppose that eight calls to rand () % 100 (i.e. mod-reduced base 100) produced:

0,78,23,98,13,35,45,25, 61

Then recover_previous([78, 23, 98, 13, 35, 45, 25, 61], 100) should return 0, if 0 is the
only possible previous value for the given sequence.

* You should assume that the modular reduction is unsigned; this operation is exposed by the
Z3 API's URem(n, base) function.

* You should assume that shift operations are signed; these are overloaded by the Z3 API, and
can be accessed using the normal Python shift notation: << and >>.

¢ Addition, multiplication, and other bitwise operators are likewise overloaded.

Check your implementation by testing it on the sequence given above: it should output 0 given the
last seven outputs. Then, determine how many observations are required to uniquely determine
the solution to this sequence.

Task 4 (5 points). Use your solution to Task 3 to determine the largest number of consecutive
zeros that rand () % 10 can output. It may help to modify recover_previous to write to standard
output to complete this task.
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| def recover_previous(observed: List[int], modulo: int) -> Optional[int]:

5

prev_output = BitVec(’previous’, 32)

4

5 s = Solver ()

6

7 #TODO: Add appropriate constraints to ‘sf

8

9 if s.check() == sat:

10 prev_sol = s.model().evaluate(prev_output, model_completion=True).
as_signed_long ()

11

12 220

13 TODO: Determine whether ‘prev_sol ‘ ts the unique solution,

14 and return the appropriate value (None in the case of not-unique)

15 220

16 else:

17 prev_sol = None

19 return prev_sol

Figure 1: Template for Task 3

3 State Invariants (30 points)

In lecture, we studied an approach to bounded model checking aimed at verifying Hoare triples
{P} a{Q}, ie., that whenever P is true in the initial state, ) must be true in any state that «
terminates in.

In many practical settings, bounded model checking is used to check state invariants, which are
properties of the program state that are intended to remain true at all times while the program
executes. In other words, given a formula R, the model checker attempts to verify that R is true
in each intermediate state that a enters.

The strongest postcondition generator that we wrote in lecture can be modified to implement
a bounded model checking procedure that handles state invariants. The approach is conceptually
similar to unwinding assertions, in that we can view it largely in terms of a transformation on the
program being checked. Namely, for any statement that directly changes the state, we insert a
conditional check after it of R; if R no longer holds, then we assign 1 to a special variable, err.

ri=e becomes x:=e;((?-R;err :=1) U (?R;err := err))

Task 5 (10 points). Modify the post function in bmc. py to simulate having rewritten the program
as described above. Because the only statements that can directly change state are assignments,
your modifications will be limited to the case for Asgn.

1 if isinstance (alpha, Asgn):
2 left, right = alpha.left, alpha.right

4 if R is not Nomne:
; # Add code here to "simulate" having rewritten the program as
6 # being followed by a check on ‘R‘, as described in the handout
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Task 6 (20 points). Implement the check_invariant function in bmc.py, which takes a program
alpha, a precondition P, a state invariant R, and a maximum unwinding depth, and returns True
exactly when the state invariant R is true in all states of alpha starting in P, up to the given depth.

1 def check_invariant (alpha: Prog, P: BoolRef, R: BoolRef, max_depth=10) -> bool:
2

220

4 TODO: implement thts procedure so that it returns True
5 tf and only %f all states that alpha enters
6 up to the given exzecution depth satisfy R

9 return False
* Your implementation will make use of your solution for Task 5 to ensure that whenever an

intermediate state fails to satisfy R, then err is set to 1.

* Make sure that your solution also reflects the fact that err is initialized to 0 whenever the
initial state satisfies R.

* You can use Z3 to check the satisfiability of the strongest postcondition generated by post,
conjoined with a condition on err that you must derive; the result of this check should allow
you to determine whether alpha satisfies the state invariant.

* Be sure to test your implementation on simple examples. For example, (z := = + 1)* with
the state invariant x < 5, at different settings of max_depth.
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