Assignment 2
Verification at Every Tern

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Thursday, February 10, 2022
70 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/s22/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

e Submit the file asst2.zip to Assignment 2 (Code). You can generate this file by running
make handin. This will include your solution ternary.mlw, and the proof session in ternary/.

e Submit a PDF containing your answers to the written questions to Assignment 2 (Written).
You may use the file asst2.tex as a template and submit asst2. pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst2.tex to get you started on this.

ASSIGNMENT 2 DUE 23:59PM, THURSDAY, FEBRUARY 10, 2022
70 PTS

http://www.cs.cmu.edu/~15414/s22/assignments.html

Verification at Every Tern HW2.2

1 Leave No Tern Unstoned (55 pts)

Balanced ternary numbers are a representation of integers with some remarkable properties. This
representation has three digits with values -1, 0, and 1. It represents any integer uniquely (assum-
ing no leading Os) and has some nice symmetry properties. For example, a number is negated just
be negating every digit. An early computer builtin Moscow in 1958 actually used balanced ternary
numbers and ternary logic, instead of the binary system we are now used to. The Wikipedia article
on balanced ternary provides an introduction and more details about how to perform operations
on numbers represented this way.

In this problem you are asked to implement and verify some simple functions over ternary
numbers. This is partly an exercise is specification suitable for verification, and partly and exercise
in working with data types. It may be helpful to review regular expressions (Lecture 5 and live
code regexp-spec.mlw) and how we wrote the axioms specifying the interpretation of regular
expressions.

Each function you write should be verified against contracts expressing the correct-
ness of your implementation.

The digits d should be either 1, 0, or 1 with values f(1) = —1, f(0) = 0 and f(1) = 1. The value
of a ternary number d, ... dy is determined by

v(dy ... do) =) f(di)3
=0

From a verification perspective, this is difficult to work with due to its use of exponentials. More
helpful is the following recurrence:

v(dy...do) = f(do)+3v(dy...d1)
v() =0

This suggest representing ternary numbers as a list of digits, with the least significant bit first. Note
that the representation of a number is not unique, because one can add arbitrarily many leading
zeros without changing its value.

For concreteness, we suggest the following representation, which you can find in the file
ternary.mlw. You are free to choose a different representation, but if you do, please briefly explain
it in a comment in the file.

1 type digit = Z0 | P1 | M1

2 let function f (d:digit) : int =
|

match d with Z0 -> 0 | P1 -> 1 M1 -> -1 end

type tern = list digit

6 (¥ least significant digit first *)

7 (¥ tratling ZO digits are allowed *)
Note that we defined let function f which means that f can be used logically, in contracts, but
also computationally. Here are several examples:

Integer Ternary WhyML
6 110 ConsZ0(Cons M1 (ConsP1Nil))
-2 11 Cons P1 (Cons M1 Nil)
ASSIGNMENT 2 DUE 23:59PM, THURSDAY, FEBRUARY 10, 2022

70 PTS

https://en.wikipedia.org/wiki/Balanced_ternary
http://www.cs.cmu.edu/~15414/s22/lectures/05-semantics.pdf
http://www.cs.cmu.edu/~15414/s22/lectures/05-semantics/regexp-spec.mlw

Verification at Every Tern HW2.3

Task 1 (10 pts). Specify a predicate value (t:tern) (a:int) that relates a ternary number to its
integer value by a set of axioms.

Task 2 (5 points). Test your axioms using Why3 goal constructs, as demonstrated in the live-code
component of Lecture 6.

e In this case, the goal formulas that you write should either state that value correctly relates
a given int to a corresponding tern, or that value does not relate an int to an incorrect tern.

e Demonstrate that you have tested your axioms by including at least five such goals in your
solution.

Task 3 (5 pts). Define a function to_int (t:tern) : int converting a ternary number ¢ to the
integer it represents.

Task 4 (10 pts). Define a function from_int (a:int) : tern converting an integer a to a ternary
number. The module int.EuclideanDivision that defines div and mod functions may be helpful.

You may not use the functions to_int and from_int in the remaining tasks. Those functions
should be defined directly on the ternary representation.

Task 5 (10 pts). Define functions inc (t:tern) : ternanddec (t:tern) : termthatincrement
and decrement ¢, respectively.

Task 6 (15 pts). Define a function plus (s:tern) (t:tern) : tern that computes the sum of s
and ¢.

2 It's a Question of Semantics (15 pts)

In this collection of tasks we work with the simple while language from Lecture 5.

Task 7 (10 pts). Define the semantics of a repeat-until loop
repeat o until @

which executes « repeatedly until () becomes true. Importantly, @) is tested after each execution of
«, which means that the body will always execute at least once.

Task 8 (5 pts). Define an alternative semantics of the repeat-until loop by showing how to translate
it into the while language. You do not have to prove that the two definitions are equivalent.

ASSIGNMENT 2 DUE 23:59PM, THURSDAY, FEBRUARY 10, 2022
70 PTS

http://www.cs.cmu.edu/~15414/s22/lectures/06-dynamiclogic.pdf
http://www.cs.cmu.edu/~15414/s22/lectures/05-semantics.pdf

	Leave No Tern Unstoned (55 pts)
	It's a Question of Semantics (15 pts)

