
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Data Structures

Frank Pfenning

Carnegie Mellon University
Lecture 3

February 9, 2021

1 Introduction

Our study of logical contracts so far has focused on control structures: How do functions,
assignments, and loops give rise to verification conditions that entail the correctness of
the code? In the last example we introduced two elementary data structures (lists and
queues) and verified an implementation of queues using two lists. In this lecture we
deepen our investigation into how to reason about data structures. A key concept that
we need to capture is that of a data structure invariant. With executable contracts, such
invariants are checked by functions. With logical contracts, they are expressed as logical
properties of the data structures. We can classify data structures as persistent (also called
immutable) and ephemeral (also called mutable). Persistent data structures are prevalent
in functional programming, while ephemeral data structure are more common in im-
perative programming. Since WhyML covers a spectrum of functional and imperative
programming, we will consider both and identify some commonalities and differences.

We will also take a look at testing, why it is still important, and briefly consider how
to use the Why3 IDE during code development.

Learning goals. After this lecture, you should be able to:

• Exploit representation invariants in verification;

• Combine verification with testing;

• Use the Why3 IDE;

• Verify code using mutable data structures such as arrays.

http://www.cs.cmu.edu/~15414/s21

L3.2 Data Structures

2 Data Structure Invariants

As a simple example of data structure invariants we reconsider our implementation of
queues.

1 module Queue

2

3 use list.List

4 use list.Append

5 use list.Reverse

6 use option.Option

7

8 type queue ’a = { front : list ’a ; back : list ’a }

9

10 function sequence (q : queue ’a) : list ’a =

11 q.front ++ reverse q.back

12

13 let empty () =

14 ensures { sequence result = Nil }

15 { front = Nil ; back = Nil }

16

17 let enq (x : ’a) (q : queue ’a) : queue ’a =

18 ensures { sequence result = sequence q ++ Cons x Nil }

19 { front = q.front ; back = Cons x q.back }

20

21 let deq (q : queue ’a) : option (’a , queue ’a) =

22 ensures { (result = None /\ sequence q = Nil)

23 \/ (exists x:’a. exists r:queue ’a. result = Some(x,r)

24 /\ sequence q = Cons x (sequence r)) }

25 match q.front with

26 | Nil -> match reverse q.back with

27 | Nil -> None

28 | Cons x b -> Some (x, { front = b ; back = Nil })

29 end

30 | Cons x f -> Some (x, { front = f ; back = q.back })

31 end

32

33 end

We would like to extend the interface with a function qsize that returns the number
of elements in a queue. The obvious way to compute this would be to compute the
lengths of the front and back and add them, but the complexity would be linear in the
size of the queue. To answer this query in constant time we add a size field to the queue
and maintain it as we enqueue or dequeue elements. The data structure invariant here
is that the size field always contains the sum of the lengths of the front and back.

1 type queue ’a = { front : list ’a ;

2 back : list ’a ;

3 size : int }

4 invariant { size = length front + length back }

In the logic, the verifier assumes the invariant when reasoning about queues. This
could create a logical inconsistency (everything is provable!) if the invariant is unsatis-
fiable. For example, the trivial invariant false means any program in the scope of this

15-414 LECTURE NOTES FRANK PFENNING

Data Structures L3.3

declaration could now be verified. To avoid this, Why3 will try to prove that there ex-
ists an instance of the data structure for which the invariant is satisfied. For complex
invariants this can be difficult, so WhyML gives you a way to specify an instance of the
data structure satisfying the invariant with a ‘by’ clause. In this particular case it would
be unnecessary, but it is good practice to always supply it.

1 type queue ’a = { front : list ’a ;

2 back : list ’a ;

3 size : int }

4 invariant { size = length front + length back }

5 by { front = Nil ; back = Nil ; size = 0 }

In this example it is relatively easy to update the code to maintain the size field and
Why3 will prove that it is always correct. In constructing the verification condition we
may think of the invariant as being assumed at the beginning of a function (like a pre-
condition) and proved at the end of a function (like a postcondition). In between, the
invariant may be violated, although this possibility does not come into play here. It is
necessary because you may build or modify an element of the data structure incremen-
tally and only at the end does the invariant hold.

The qsize function just returns the size field. In addition, the postcondition certifies
that it is indeed the length of the queue (when viewed as a single sequence of element,
which represents the client’s perspective.

1 let qsize (q : queue ’a) : int =

2 ensures { result = length (sequence q) }

3 q.size

You can find the other functions in the file queue.mlw.

3 Testing and Implicit Preconditions

In 1977 Donald Knuth famously wrote “Beware of bugs in the above code; I have only proved
it correct, not tried it.” in a 5-page memo Notes on the van Emde Boas construction of priority
deques: An instructive use of recursion. You might think that if he had proved it using
Why3 then he wouldn’t have to be worried. I think he still would have been, and he
should have been! Here are some of the things that can still go wrong even if Why3
says “Verified!”.

• Your preconditions could be prohibitively strict, even to the point where no client
could possibly call your functions.

• Your postconditions could be prohibitively lax, to the point where the client obtains
no information at all about the computation of your function.

• Your definitions and axioms could be incorrect in the sense that they do not cap-
ture the property you were trying to prove. In the extreme case they could be vac-
uous (equivalent to true and therefore not saying anything) or inconsistent (equiv-
alent to false and therefore implying everything whatsoever).

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s21/lectures/03-datastructures/queue.mlw

L3.4 Data Structures

• There could be a bug in Why3 or one or more of the back-end provers, extracting
an incorrect verification condition or proving one that isn’t valid. In fact, it is
almost certain that Why3 and all the back-end provers have bugs, so it is just a
matter of probabilities whether you trip any of them.

You may think these are unlikely, but you should be prepared that almost certainly at
least some of these things will happen to you.

When grading your homework, we combat these issues by combining manual in-
spection with replaying the Why3 sessions.

When you develop your code, you most likely will be in the opposite situation for a
while: your code can not be verified. Then you have to look for the exact opposite of
the points raised above, plus a very real first possibility:

• Your code is incorrect!

• Your preconditions could be prohibitively lax, to the point where they are too
weak to imply loop invariants or preconditions for operations or function calls,
or the postcondition at the end of the function. Of course, this may be the case
even if your code is correct!

• Your postconditions could be prohibitively strict, to the point where they simply
do not follow from what you know at the end of the function. Again, this may be
the case even with correct code.

• Your definitions and axioms do not properly capture the property you wish to
prove (and are convinced is true).

• The back-end provers in Why3 are not strong enough to prove the verification
condition even though it is true and, on top of it, your code is correct.

To mitigate all these issues, it is sensible to combine testing with verification even
during the development process. Among other things:

• It may help you to determine whether your code is correct and, if not, have some
counterexamples. Unfortunately, today’s technology is such that it is difficult to
obtain counterexamples from failing provers. A reasonable set of successful test
cases may point you towards other kinds of issues you might have.

• If you run Why3 on your program including the testing code it may help you un-
cover situations where the preconditions are too strict. That could mean your test
function will fail to verify, even if Why3 assumes all the pre- and post-conditions
in the rest of your program.

• It may help you to think about the code by writing out explicitly how it should
behave on specific examples.

Even though our code has been verified, let’s write a little test function. By con-
vention, a test function should take unit as an argument, because the why3 execute

command will pass the unit element to the specified function.

15-414 LECTURE NOTES FRANK PFENNING

Data Structures L3.5

1 let test () =

2 let q0 = empty () in

3 let q1 = enq 1 q0 in

4 let q2 = enq 2 q1 in

5 let q3 = enq 3 q2 in

6 match deq q3 with Some (x1, q4) ->

7 match deq q4 with Some (x2, q5) ->

8 match deq q5 with Some (x3, q6) ->

9 match deq q6 with None -> (x1, x2, x3)

10 end end end end

and we get (note the necessary module qualifier Queue.):

% why3 execute queue.mlw Queue.test

Execution of Queue.test ():

type: (int, int, int)

result: (1, 2, 3)

globals:

%

Fortunately, this is the expected answer because we enqueue 1, 2, 3 and then dequeue
three elements and return a tuple consisting of them. An interesting aspect of the func-
tion test is that the patterns it matches against are not exhaustive. When we dequeue
from q3 it is impossible for the queue to be empty, so the value returned cannot be None.
When Why3 encounters a match expression that does not cover all the possible cases
based only on the type information, it generates a verification condition to prove that
the omitted cases are impossible. In this example, by tracking the postconditions, the
verifier should know precisely that the sequence at the point where deq q3 is called is
1, 2, 3 and therefore the queue nonempty.

We can actually test this: let’s add the postcondition that the answer must be (1,2,3)
and run the alt-ergo theorem prover and the file with the additional, strict function
test.

% why3 prove -P alt-ergo queue.mlw

queue.mlw Queue queue’vc: Valid (0.00s, 0 steps)

queue.mlw Queue empty’vc: Valid (0.01s, 26 steps)

queue.mlw Queue enq’vc: Valid (0.02s, 123 steps)

queue.mlw Queue deq’vc: Valid (0.28s, 908 steps)

queue.mlw Queue qsize’vc: Valid (0.00s, 10 steps)

queue.mlw Queue test’vc: Timeout (5.00s)

%

Hmmm, it doesn’t seem to be able to prove our test function. Suspecting that the code
and contracts are correct and the theorem prover is too weak, let’s try CVC4.

% why3 prove -P cvc4 queue.mlw

queue.mlw Queue queue’vc: Valid (0.02s, 4244 steps)

queue.mlw Queue empty’vc: Valid (0.04s, 6706 steps)

15-414 LECTURE NOTES FRANK PFENNING

L3.6 Data Structures

queue.mlw Queue enq’vc: Valid (0.06s, 9124 steps)

queue.mlw Queue deq’vc: Valid (0.19s, 25682 steps)

queue.mlw Queue qsize’vc: Timeout (5.00s, 2064194 steps)

queue.mlw Queue test’vc: Valid (0.43s, 57994 steps)

%

Although it is somewhat slow and take a lot of steps, CVC4 manages to verify that
test () must return (1,2,3)! However, for some strange reason it fails to verify the
very simple qsize function which was no problem at all for alt-ergo.

At this point we can invoke

% why3 ide queue.mlw

and launch strategy Auto level 2 (or keyboard shortcut 2) which tries different provers
on different subgoals and quickly verifies the code. If we save the session under the file
menu (or keyboard shortcut Ctrl-S) we can examine the session statistics.

% why3 session info --stats queue

== Number of root goals ==

total: 6 proved: 6

== Number of sub goals ==

total: 0 proved: 0

== Goals not proved ==

== Goals proved by only one prover ==

+-- file [../queue.mlw]

+-- theory Queue

+-- goal queue’vc: CVC4 1.7

+-- goal empty’vc: CVC4 1.7

+-- goal enq’vc: CVC4 1.7

+-- goal deq’vc: CVC4 1.7

+-- goal qsize’vc: Alt-Ergo 2.3.1

+-- goal test’vc: CVC4 1.7

== Statistics per prover: number of proofs, time (minimum/maximum/average) in seconds ==

Alt-Ergo 2.3.1 : 1 0.00 0.00 0.00

CVC4 1.7 : 5 0.02 0.46 0.16

%

One lesson from this example that certain constructs have implicit preconditions. This
includes pattern matches against data types (they should exhaustive), calls to func-
tions such as div or mod (the second argument should not be zero), array accesses (the
index should be in bounds; not yet discussed), and functions passing data structures
endowed with invariants (they should hold).

15-414 LECTURE NOTES FRANK PFENNING

Data Structures L3.7

4 Arrays

Because of their efficiency arrays are a common data structure in imperative programs.
Reasoning about arrays requires a number of techniques due to their inherent mutabil-
ity and range requirements for array access.

We consider a key/value store in a simple array, usually not the preferred choice due
to its fixed size. We use integers as keys and data are of arbitrary type. Because integers
represent both keys and array indices, we introduce a new type alias key. A key/value
pair is just a record with a key field and a data field. The complete live code for this
example can be found in the file search.mlw.

1 module SearchArray

2 use int.Int

3 use array.Array

4 use array.ArrayEq

5

6 type key = int (* transparent type alias *)

7 type keyval ’a = { key : key ; data : ’a }

8

9 ...

10 end

We start with a search function that does not modify the array and returns an index
of the entry matching the given key, or -1 if no such entry exists. We start:

1 let search (k : key) (a : array (keyval ’a)) : int =

2 ensures { (result = -1 /\ not (defined k a))

3 \/ a[result].key = k }

4 ensures { a = old a }

The second postcondition uses the keyword old to indicate that the state of a (which,
as an array is mutable) at the end of the function is the same as the state of a at the
beginning of the function (expressed as old a).

In the first postcondition, it remains implicit that 0 ≤ result < a.length, because if
result were not in the range we definitely would not be able prove that a[result].key =
k. Generally, we might prefer to make this explicit. Second, we note the predicate
defined k a which should be true if key k is defined somewhere in the array a. So we
specify before the function search:

1 predicate defined (k : key) (a : array (keyval ’a)) =

2 exists i:int. 0 <= i < a.length /\ a[i].key = k

It is important to think logically rather than operationally when defining predicates,
to be used only in contracts. In particular, we use quantifiers rather than iteration or
recursion.

Next we write the body of the function, at first without loop invariants. An array is
actually a record, where .length returns its length (which is an immutable field). We
use n as an abbreviation for a.length and then iterate through the array until either we
reach the end or we find an element matching the given key.

1 let search (k : key) (a : array (keyval ’a)) : int =

15-414 LECTURE NOTES FRANK PFENNING

http://www.cs.cmu.edu/~15414/s21/lectures/03-datastructures/search.mlw

L3.8 Data Structures

2 ensures { (result = -1 /\ not (defined k a))

3 \/ a[result].key = k }

4 ensures { a = old a }

5 let n = a.length in

6 let ref i = 0 in

7 while i < n && a[i].key <> k do

8 i <- i + 1

9 done ;

10 if i = n then -1 else i

Note that in a computational context we use && for conjunction, which is short-
circuiting. That’s important here because if we reach the end of the array we have
i = n so the access a[i] would otherwise be out of bounds.

The next questions are the loop invariants and the loop variant. In fact, the variant
is easy: we increment i which is bounded by n above, so n − i is the variant. We also
record 0 ≤ i ≤ n as an invariant, which is mechanical for this kind of loop.

1 let search (k : key) (a : array (keyval ’a)) : int =

2 ensures { (result = -1 /\ not (defined k a))

3 \/ a[result].key = k }

4 ensures { a = old a }

5 let n = a.length in

6 let ref i = 0 in

7 while i < n && a[i].key <> k do

8 invariant { 0 <= i <= n }

9 invariant { ... }

10 variant { n - i}

11 i <- i + 1

12 done ;

13 if i = n then -1 else i

We have left room for a second invariant which is central for the correctness of this
function. We have to express that all the elements we have already scanned have a key
different from k. One way to express this would be to generalize the predicate defined

to take an upper bound. Instead, we just express it here in line using quantification.

1 let search (k : key) (a : array (keyval ’a)) : int =

2 ensures { (result = -1 /\ not (defined k a))

3 \/ a[result].key = k }

4 ensures { a = old a }

5 let n = a.length in

6 let ref i = 0 in

7 while i < n && a[i].key <> k do

8 invariant { 0 <= i <= n }

9 invariant { forall j. 0 <= j < i -> a[j].key <> k } }

10 variant { n - i}

11 i <- i + 1

12 done ;

13 if i = n then -1 else i

This function can now be verified because at the end of the loop either i = n (in
which case the second loop invariant tells us that the key k is not in the array) or i < n,
in which case a[i].key = k and we can return i.

15-414 LECTURE NOTES FRANK PFENNING

Data Structures L3.9

5 Mutating Arrays

Searching through an array has the special property that we do not modify it. When we
modify an array as we traverse it the loop invariant generally has to be more compli-
cated. This is because with any assignment to an array element inside a loop, we lose
all information about what any element in the array is. Therefore, we generally need to
specify the entries of the array we change and how, and in addition that the remaining
entries do not change.

As an example, we consider a function to negate every element in a key/value array
of integers. In order to verify this, we define a predicate

1 predicate negated (a : array (keyval int)) (b : array (keyval int))

(i : int) =

which is true if the elements of a[0..i) are the negated versions of the corresponding
elements in b. In its definition we just need to be careful that the arrays a and b have the
same length and that the index i is in bounds.

1 predicate negated (a : array (keyval int)) (b : array (keyval int))

(i : int) =

2 a.length = b.length /\ 0 <= i <= a.length

3 /\ forall j. 0 <= j < i -> a[j].key = b[j].key

4 /\ a[j].data = -b[j].data

The postcondition for out negation function now expresses that the state of the array
upon the return is equal to the old value of the array all the way up to the last element.

1 let negate (a : array (keyval int)) : unit =

2 ensures { negated a (old a) a.length }

3 for i = 0 to a.length -1 do

4 a[i] <- { key = a[i].key ; data = -a[i].data }

5 done ;

6 ()

This code has two additional new constructs. We use the type unit (whose only element
is ()) to express that the function returns no interesting value. This usually implies that
it mutates some of its arguments, in this case the array a.

We also use a for loop, of the form for i = lower to upper do . . . done for which
we give inclusive bounds. It generates suitable loop invariants for the index lower ≤
i ≤ upper + 1 and a variant of upper + 1 − lower . There is an analogous form for i =
upper downto lower do . . . done.

What remains is to state the invariants regarding the array. Intuitively, at iteration i
we have negated all the elements up to i while the elements at indices greater or equal
to i have remained unchanged. To specify this we find in the useful array.ArrayEq
module the function

1 array_eq_sub (a : array ’a) (b : array ’a) (lower : int) (upper : int)

which is true if for all lower ≤ i < upper we have a[i] = b[i]. We use this where b is the
original version of a.

15-414 LECTURE NOTES FRANK PFENNING

L3.10 Data Structures

1 let negate (a : array (keyval int)) : unit =

2 ensures { negated a (old a) a.length }

3 for i = 0 to a.length -1 do

4 invariant { negated a (old a) i }

5 invariant { array_eq_sub a (old a) i a.length }

6 a[i] <- { key = a[i].key ; data = -a[i].data }

7 done ;

8 ()

It is not necessary to explicitly return the unit element (since the for-loop already
returns the unit element), but we write it out for emphasis.

The code now verifies, but true to our methodology we can also try it out.

1 let mk (k : key) (x : ’a) : keyval ’a = { key = k ; data = x }

2

3 let test () =

4 let a = Array.make 3 (mk 0 "") in

5 (a[0] <- mk 3 "c" ; a[1] <- mk 2 "b" ; a[2] <- mk 1 "a") ;

6 (search 2 a , search 4 a , search 1 a)

% why3 execute search.mlw SearchArray.test

Execution of SearchArray.test ():

type: (int, int, int)

result: (1, (-1), 2)

globals:

%

This time, we would not be able to prove the expected outcome because the prover
does not have enough information about the behavior of the function. Expressing such
information in the form of models of the data structure will be part of the next lecture.

15-414 LECTURE NOTES FRANK PFENNING

	Introduction
	Data Structure Invariants
	Testing and Implicit Preconditions
	Arrays
	Mutating Arrays

