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1 Introduction

How do we know our programs are correct? Well, usually we don’t. But there are
a number of time-honored techniques to at least catch some bugs, most prominently
testing. While indispensible, testing can almost never prove that our code is actually
correct, and with distributed, parallel, concurrent, and probabilistic programs on the
rise, bugs are more likely than ever to survive even rigorous testing.

It seems better to avoid bugs in the first place. Fortunately, there are a number of
techniques around to help with that. One is code review, again indispensible for larger
code bases, but it suffers from human limitations. By far the most pervasively used
is static typing which catches many simple bugs before a program is ever executed. It
is meaningful to the programmer and machine alike, predictable, and compositional in
the sense that we can check small fragments of code independently from each other. But
static typing with conventional type systems has its limitations. Consider, for example,
the collection of functions of type int → int. The question then is how we express and
check deeper properties of programs.

Since most deep properties about programs are undecidable, there is no silver bullet
that prevents all bugs and can be used as easily and routinely as a static type system.
Perhaps most conservative are systems of type refinement that extend expressiveness
somewhat while trying to retain the predictability and compositionality of conventional
types. Systems of dependent types go further in that they allow the formal expression of
proofs in addition to that of programs. This puts more of a burden on the programmer,
who now either has to write correctness proofs (as in Agda) or write programs to search
for correctness proofs (as in Coq).1

1Since these are lecture notes we take the liberty of providing links instead of full citations.

http://www.cs.cmu.edu/~15414/s21
https://github.com/agda/agda
https://coq.inria.fr/


L2.2 Logical Contracts

Dependent types in one form or other are a prevalent technique in functional pro-
gramming. For imperative programs, there is a line of research on program logics, that
is, logics specifically designed to reason about the correctness of programs. A program
logic must allow us to express the programs we are reasoning about as well as the spec-
ification they are supposed to satisfy. A proof in a program logic then is evidence that
the program matches its specification. Depending on the programming language and
the complexity of the specification this may require some programmer interaction, or
we may be able to discharge the proof obligations automatically.

In this course we will focus on the program logics and methods to automatically
prove that programs satisfy their specifications. In order for this to be feasible for non-
trivial programs and specifications we need to able to break the problem down into
smaller units than whole programs, that is, achieve a degree of compositionality. This
is the role of logical contracts. Logical contracts specify under which circumstances a
function may be called (the precondition) and what it guarantees for its result (the post-
condition). The intuition is that the correctness proof for the rest of the program may
only rely on the pre- and post-condition of a function and not its definition. Addition-
ally, contracts allow us to express why functions or loops terminate (the variant), and
which properties are preserved in a loop or data structure (the invariant). All of these
are critical in making verification feasible. The other critical component is the theorem
prover in the background that eventually verifies that the program obeys its contracts.
Techniques for automated theorem proving will be the focus of the latter part of this
course.

The content of the course is divided into three parts.

Part I: Reasoning about Programs: From 122 and 150 to 414. We gain an intuitive un-
derstanding how the executable contracts from the course on Imperative Program-
ming (122) and the informal mathematical contracts from Functional Program-
ming (150) can be translated into logical contracts and then proved. It also serves
as an introduction to the WhyML language and Why3 verification toolchain we’ll
use throughout the semester.

Part II: From Informal to Formal Reasoning. We develop a program logic (specifically
dynamic logic) in which reasoning about programs can be carried out formally
and therefore mechanized. We carefully justify the logical axioms and rules with
respect to the operational meaning of the programs to show that they are sound.
Therefore, formal proofs do indeed guarantee properties of the programs that are
executed.

Part III: Mechanizing Reasoning. We explore decision procedures for tractable frag-
ments of program logics in the form of propositional satisfiability checkers (SAT),
including those with built-in theories (SAT modulo theories, or SMT), and model
checking.

In this first technical lecture we will look back at executable contracts from the C0 lan-
guage, how they are recast into logical form, and how we can use them to reason about
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the correctness of programs. We will exemplify how the same techniques for specifica-
tion and reasoning can be applied to functional programs. We cast the programs into
WhyML and formally verify our first small programs.

Learning goals. After this lecture, you should be able to:

• Write logical contracts (that is, pre- and post-conditions for functions, loop invari-
ants, assertions, and variants) for small imperative programs over integers;

• Extract verification conditions for small imperative programs over integers with
logical contracts;

• Translate simple imperative programs to functional analogues, including the con-
tracts;

• Relate the verification of loop invariants to verification of corresponding tail-
recursive functions;

• Write logical contracts for small functional programs over simple immutable data
types such as lists;

• Browse the Why3 Standard Library;

• Use the why3 command line interface to examine verification conditions and
prove them with one of the standard automated provers.

2 A Mystery Function

We start with a small puzzle. Consider the following function, written in C0 (although
equally meaningful in C). Try it out or simulate it by hand to see the values it produces
and come to a conjecture about which function it represents. Also give some thought to
how you might go about proving your conjecture. If you didn’t attend lecture, please
give it a serious try before moving on to the next page.

1 int f(int n)

2 {

3 int i = 0;

4 int a = 0;

5 int b = 1;

6 while (i < n)

7 {

8 b = a + b;

9 a = b - a;

10 i = i+1;

11 }

12 return a;

13 }

15-414 LECTURE NOTES FRANK PFENNING
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It probably didn’t take you long to conjecture that f(n) computes the nth Fibonacci
number. As is often the case, the key insight into the correctness of the function will be
in the loop invariant. Before we get there, we follow the methodology of the executable
contracts from 15-122 Principles of Imperative Computation and then translate them into
logical form.

2.1 Preconditions

A precondition for a function imposes a requirement upon any caller, namely that the
precondition should be true. For executable contracts, this means that the precondi-
tion is a pure function and evaluates to true. For logical contracts it will mean that the
condition is true. In this case, the precondition is the n ≥ 0. We use the C0 syntax
//@requires to express the precondition and elide the remainder of the function.

1 int f(int n)

2 // @requires n >= 0;

3 {...}

2.2 Postconditions

A postcondition for a function expresses what the caller may assume about its result
(and, later, about its effects). It is important that the caller cannot “look inside” the
function to reason about it behavior, but it must rely only on the postcondition. This is
an important principle allowing us to localize the reasoning in individual functions. In
essence, functions represent an abstraction boundary that greatly aids the feasibility of
program verification.

In this example, the postcondition states that f computes the Fibonacci function, but
how can we actually say this? In C0, there is no recourse except to define a simple (if
highly inefficient) function which we view as the specification. This function must be
pure, that is, it may not have any externally observable effect. This is important because
a program with executable contracts should behave the same whether contracts are
actually checked or not.

1 int fib(int n)

2 // @requires n >= 0;

3 {

4 if (n == 0) return 0;

5 else if (n == 1) return 1;

6 else /* n >= 2 */ return fib(n-2) + fib(n-1);

7 }

8

9 int f(int n)

10 // @requires n >= 0;

11 // @ensures \result == fib(n);

12 {...}

15-414 LECTURE NOTES FRANK PFENNING
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2.3 Loop Invariants

The verification task requiring the most creativity is determining a suitable loop invari-
ant. Here are the critical properties of loop invariants, when we consider them merely
executable contracts to be checked dynamically, as the program runs.

Location: The loop invariant is always checked just before the guard condition. This
is to ensure we can rely on the loop invariant in case the loop guard is false.
The invariant is always checked with respect to the current values of all variables
appearing in them.

Initialization: Just before the loop is entered the first time, the loop invariant must be
true.

Preservation: When we jump back to the beginning of the loop, the loop invariant
must be true.

From a logical perspective, this means

Initialization: We can prove the loop invariant from all the assumptions we have when
reaching the beginning of the loop.

Preservation: We may assume the loop invariant and the guard condition are both
true, before descending into the body of the loop. By the time we jump back, we
then have to prove the loop invariant for the new values of all the variables at
the end of the loop. Also important is that we lose all the assumptions we had
accumulated before we entered the loop.

Exit: Upon exit of the loop, we may assume the loop invariant and the negation if the
loop guard.

Usually, one or more loop invariants pertain to the value of a variable that is incre-
mented, decremented, or otherwise drives the iteration of the loop. Here, this is i. It is
easy to see that i ranges from 0 to n.

1 int f(int n)

2 // @requires n >= 0;

3 // @ensures \result == fib(n);

4 {

5 int i = 0;

6 int a = 0;

7 int b = 1;

8 while (i < n)

9 // @loop_invariant 0 <= i && i <= n;

10 // @loop_invariant ...

11 {

12 b = a + b;

13 a = b - a;

14 i = i+1;

15 }

16 ...

17 }
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Even though it may be a bit counterintuitive at first, we need to specify i ≤ n and not
just i < n because before the loop guard is checked after the last iteration we have i = n.

The other missing invariant in this case is concerned with the value we are com-
puting. Finding such an invariant may require considerable ingenuity—here a little
experimentation with pencil and paper tells us that a = fib(i) and b = fib(i+ 1).

1 int f(int n)

2 // @requires n >= 0;

3 // @ensures \result == fib(n);

4 {

5 int i = 0;

6 int a = 0;

7 int b = 1;

8 while (i < n)

9 // @loop_invariant 0 <= i && i <= n;

10 // @loop_invariant a == fib(i) && b == fib(i+1);

11 {

12 b = a + b;

13 a = b - a;

14 i = i+1;

15 }

16 ...

17 }

Logically, we conclude the following facts upon loop exit:

• 0 ≤ i and i ≤ n (loop invariant at line 9)

• a = fib(i) and b = fib(i+ 1) (loop invariant at line 10)

• i 6< n (loop guard at line 8 is false)

2.4 Assertions

From the information we have when exiting the loop, we can see that i = n must be
true (because i ≤ n and i 6< n). In the absence of formal proof, we may not be fully
confident of that fact, so we can insert an assertion that is checked dynamically and
would raise an exceception if i 6= n.

Logically, too, it is often helpful to state what we know after the loop in the form of
an assertion. An assertion must be known to be true, and is can therefore be assumed
subsequently. While theoretically redundant (adding an assumption that is already
entailed by our knowledge doesn’t change what we can prove), it may be an important
lemma for the theorem prover and can make the difference between success and failure.

1 int f(int n)

2 // @requires n >= 0;

3 // @ensures \result == fib(n);

4 {

5 int i = 0;

6 int a = 0;

7 int b = 1;
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8 while (i < n)

9 // @loop_invariant 0 <= i && i <= n;

10 // @loop_invariant a == fib(i) && b == fib(i+1);

11 {

12 b = a + b;

13 a = b - a;

14 i = i+1;

15 }

16 // @assert i == n;

17 return a;

18 }

2.5 Postcondition Revisited

As we see in the code, we return a. We have already concluded that i = n and we also
know that a = fib(i), so a = fib(n). Since we return a, we substitute it for \result in the
postcondition and verify that, indeed, a = fib(n)

The postcondition is always placed in the preamble of a function. That is so that a
caller can see what it may assume about the value that is returned. But it is actually
checked at every return statement inside the function.

2.6 Testing with Executable Contracts

In C0, we can exploit the contracts adding some testing code (in a function main), com-
piling it with the -d flag (for dynamic checking), and executing it. For example:

1 int main() {

2 for (int i = 0; i < 10; i++) {

3 printf("f(%d) = %d\n", i, f(i));

4 }

5 return 0;

6 }

and then

% cc0 -d -x mystery.c0

f(0) = 0

f(1) = 1

f(2) = 1

f(3) = 2

f(4) = 3

f(5) = 5

f(6) = 8

f(7) = 13

f(8) = 21

f(9) = 34

0

%
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where 0 is the value return by the main function. The fact that no exception was raised
means that our executable contracts always evaluated to true. To check that, we may
purposely introduce a bug into our code and run the program and observe the excep-
tion.

Unfortunately, when we move to logical contracts we lose the option of testing the
contracts because they can no longer be executed. Presumably, it would be possible to
call the theorem prover dynamically on the instantiated logical conditions in case we
are unable to prove the correctness of our code and are trying to determine why.

You can find the C0 program for the this example in the file mystery.c0.

3 From Executable to Logical Contracts

In the preceding section we have been writing executable contracts but explained their
meaning in terms of logical contracts. In this section we translate from C0 to WhyML,
the language used in the Why3 tool chain and the main language in the remainder of
the course. Rather than formally introducing WhyML, we present the original C0 and
the WhyML code side by side and then explain some of the differences.

1

2 int fib(int n) function fib (n:int) : int

3 // @requires n >= 0;

4 {

5 if (n == 0) return 0; axiom fib0 : fib 0 = 0

6 else if (n == 1) return 1; axiom fib1 : fib 1 = 1

7 else /* n >= 2 */ axiom fibn : forall n:int. n >= 0

8 return fib(n-2) + fib(n-1); -> fib n + fib (n+1) = fib (n+2)

9 }

10

11 int f(int n) let f(n:int) : int =

12 // @requires n >= 0; requires { n >= 0 }

13 // @ensures \result == fib(n); ensures { result = fib n }

14 {

15 int i = 0; let ref i = 0 in

16 int a = 0; let ref a = 0 in

17 int b = 1; let ref b = 1 in

18 while (i < n) while i < n do

19 // @loop_invariant 0 <= i && i <= n; invariant { 0 <= i /\ i <= n }

20 // @loop_invariant a == fib(i) invariant { a = fib i

21 //@ && b == fib(i+1); /\ b = fib (i+1) }

22 { variant { n - i }

23 b = a + b; b <- a + b ;

24 a = b - a; a <- b - a ;

25 i = i+1; i <- i + 1

26 } done ;

27 // @assert i == n; assert { i = n } ;

28 return a; a

29 }

At the top, we see that the pure function fib is replaced by an undefined function
fib. Instead of giving its definition we state some axioms about its properties so the
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theorem prover can reason about it. Among other things, it means that fib cannot be
used computationally, only in contracts. In the third axiom we see a universal quantifier
‘forall’ and we also see implication ‘->’.

The translation of the requires and ensures clauses in the definition of f is straight-
forward, except that we use ‘=’ for equality instead of ‘==’.

A definition such as int i = 0; is translated to a binding let ref i = 0 in. This
pattern makes i assignable in its scope, using the notation i <- .... Formally, i will
have type ref int, but uses of the dereference operator ‘!’ remains implicit to make
the code more visually appealing and closer to the imperative counterpart.

The while loop and invariants translate in a straightforward manner, but we note
that the short-circuiting conjunction ‘&&’ is replaced by the logical conjunction ‘/\’.

New on the side of WhyML is a variant declaration. It contains a quantity that serves
as a termination measure for the loop (or, as we will see later, recursive function). If we
give an integer quantity, it should be nonnegative and strictly decreasing during each
loop iteration.

You can find the live code for this with some additional comments in fib.mlw.
We can now see if Why3 can prove the correctness of this function using the alt-ergo

prover.

% why3 prove -P alt-ergo fib.mlw

fib.mlw Mystery f’vc: Valid (0.01s, 17 steps)

%

Yes it can! This is our first example of a verified program, all the way from straight-
forward C0 code to an analogous verified function in WhyML.

3.1 Loop Invariant Holds Initially

Just to test our understanding, we now walk through the code and track what we may
assume, and what we have to prove. First we note that the axioms about fib will be
available to the prover from the ambient environment. Further, we name each of the
assumptions so we can refer to them when needed. We start by reasoning about how
the loop invariant is satisfied initially.

1 let f(n:int) : int =

2 requires { n >= 0 } (* assume: n >= 0 [H0] *)

3 ensures { result = fib n } (* skip for now ... *)

4 let ref i = 0 in (* assume: i = 0 [H1] *)

5 let ref a = 0 in (* assume: a = 0 [H2] *)

6 let ref b = 1 in (* assume: b = 1 [H3] *)

7 while i < n do (* prove: [H0 -3] -> 0 <= i /\ i <= n *)

8 invariant { 0 <= i /\ i <= n }

9 invariant { a = fib i (* prove: [H0 -3] -> a = fib i *)

10 /\ b = fib (i+1) } (* /\ b = fib (i+1) *)

11 variant { n - i }

12 b <- a + b ;

13 a <- b - a ;

15-414 LECTURE NOTES FRANK PFENNING
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14 i <- i + 1

15 done ;

16 assert { i = n } ;

17 a

We stop when we reach the loop. We now have to prove the two loop invariants from
the accumulated assumptions [H0–H3]. The fact that we have to prove this for all n, i,
a, b remains implicit. Of course, we have assumptions such as i = 0 which means we
really only need to prove it for this value and we can reason by substitution. What we
end up having to show then is

n ≥ 0→ (0 ≤ 0 ∧ 0 ≤ n)
n ≥ 0→ (0 = fib 0 ∧ 1 = fib (0 + 1))

which is easy, remembering the axioms about fib. The parentheses in these two verifi-
cation conditions are optional, since the convention is that conjunction ‘∧’ binds more
tightly than implication ‘→’.

3.2 Loop Invariants are Preserved

Next we have to show that the loop invariant is preserved. This means we have to
traverse the loop, knowing only the loop invariants themselves. We lose assumptions
[H1–H3] because variables i, a, and b are changed inside the loop. However, we retain
the assumption about n because n is not changed. Actually, it couldn’t: it has type int
rather then ref int and is therefore not assignable.

When we assign to a variable in the loop we need to create a fresh generation of the
variable to be used in the verification condition. This is because the variable will hold
different values at different points in the program and this must be reflected in the logic.

1 let f(n:int) : int =

2 requires { n >= 0 } (* assume: n >= 0 [H0] *)

3 ensures { result = fib n }

4 let ref i = 0 in

5 let ref a = 0 in

6 let ref b = 1 in

7 while i < n do (* assume: i < n [H4] *)

8 invariant { 0 <= i /\ i <= n } (* assume: 0 <= i /\ i <= n [H5] *)

9 invariant { a = fib i (* assume: a = fib i *)

10 /\ b = fib (i+1) } (* /\ b = fib (i+1) [H6] *)

11 variant { n - i } (* skip for now *)

12 b <- a + b ; (* assume: b’ = a + b [H7] *)

13 a <- b - a ; (* assume: a’ = b’ - a [H8] *)

14 i <- i + 1 (* assume: i’ = i + 1 [H9] *)

15 done ; (* prove: [H0,H4 -H9] -> ... *)

16 assert { i = n } ;

17 a

Note that we had to be careful in [H8] to refer to the correct generation of b, namely
the one that holds the value of the variable b at that point in the program. That’s b′.
When we reach the end of the loop (done) we have to prove the loop invariants, but for
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the current generation of all variables appearing in them. In this loop, we have to substitute
i′, a′, and b′ for i, a, and b, respectively. In other words, we have to prove

[H0,H4–H9]→ 0 ≤ i′ ∧ i′ ≤ n
[H0,H4–H9]→ a′ = fib i′ ∧ b′ = fib (i′ + 1)

The first one follows immediately since i′ = i + 1 and 0 ≤ i [H5] and i < n [H4]. The
second one follows similarly in a couple of steps, using the axiom instance fib i+fib (i+
1) = fib (i+ 2).

3.3 Loop Variant

It is easy to prove from the invariants that 0 ≤ n − i and that n − i′ < n − i because
i′ = i + 1. That is, the loop terminates because the integer n − i is always nonnegative
and strictly decreases during each iteration.

3.4 Loop Invariants and Negated Loop Guard Imply Postcondition

To complete the verification we need to traverse the remainder of the function and show
that whatever we know when we exit from the loop (and any further assumptions we
might make) imply the postcondition.

1 let f(n:int) : int =

2 requires { n >= 0 } (* assume: n >= 0 [H0] *)

3 ensures { result = fib n }

4 let ref i = 0 in

5 let ref a = 0 in

6 let ref b = 1 in

7 while i < n do

8 invariant { 0 <= i /\ i <= n }

9 invariant { a = fib i /\ b = fib (i+1) }

10 variant { n - i }

11 b <- a + b ;

12 a <- b - a ;

13 i <- i + 1

14 done ; (* assume: not (i < n) [H10] *)

15 (* assume: 0 <= i /\ i <= n [H11] *)

16 (* assume: a = fib i /\ b = fib (i+1) [H12] *)

17 assert { i = n } ; (* prove: [H0,H10 -H12] -> i = n *)

18 (* assume: i = n [H13] *)

19 a (* prove: [H0,H10 -H12,H13] -> a = fib n *)

Fortunately, both the intermediate assertion and the postcondition (where we substi-
tute the return value a for result) are easy to prove.

3.5 Examining the Verification Condition

The verification condition that is passed to the back-end provers is constructed along
the lines we have shown in this section. It accounts for a number of features of WhyML
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we did not introduce yet, so the algorithm is relatively complicated. For small ex-
amples or portions of programs it may be useful to examine the verification condi-
tion. In the command line interface to Why3 this can be accomplished with command
why3 prove <file>.mlw without providing a prover. Below is the (relevant portion) of
the output from this command on the file developed in this section.

% why3 prove mystery.mlw

...

goal f’vc :

forall n:int.

n >= 0 ->

((0 <= 0 /\ 0 <= n) && 0 = fib 0 /\ 1 = fib (0 + 1)) /\

(forall b:int, a:int, i:int.

(0 <= i /\ i <= n) /\ a = fib i /\ b = fib (i + 1) ->

(if i < n

then forall b1:int.

b1 = (a + b) ->

(forall a1:int.

a1 = (b1 - a) ->

(forall i1:int.

i1 = (i + 1) ->

(0 <= (n - i) /\ (n - i1) < (n - i)) /\

(0 <= i1 /\ i1 <= n) && a1 = fib i1 /\ b1 = fib (i1 + 1)))

else i = n && a = fib n))

We see that quantifiers are explicit, substitutions have often (but not always) been
carried out already, and that the verification condition is nested rather than being pre-
sented as a collection of independent propositions. In the integrated development envi-
ronment (IDE) for why3, this goal can be split into subgoals to be proved independently.
We will show this in a future lecture.
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4 From Imperative to Functional Programs

Of course, verification is not confined to imperative programs. In fact, one might sus-
pect functional programs are easier to verify since the they are closer to logic (or at least
those without effects).

The manner in which we constructed the verification condition is already some form
of “purification” since the verification condition itself is effect-free. To start with, we
translate the loop to a recursive function, abstracted over all variables occurring in the
loop (which are: a, b, i, n). At the end of the loop we make a tail-recursive call. Note
that the function header specifies let rec because the function is recursive.

1 let rec fib_rec a b i n =

2 while i < n do if i < n

3 b <- a + b ; then let b’ = a + b in

4 a <- b - a ; let a’ = b’ - a in

5 i <- i + 1 let i’ = i + 1 in

6 done fib_rec a’ b’ i’ n

7 else ...

Unlike the variable in the imperative code on the left, the variables on the right are
immutable, which is one of the benefits of this translation.

But what happens to the loop invariants? Consider this question before you move on
to the next page . . .
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Answer: the loop invariants become a precondition to the function implementing the
loop. This means the precondition must be satisfied in the initial call (from the top-
level function we haven’t written yet), but it must also be satisfied when the tail call
is made, which is exactly what is needed to show that the loop invariant is preserved.
The variant also carries over unchanged, because the reason the recursion terminates
is the same as the reason for the termination of the loop. We have also filled in some
(redundant) types in the function header.

1 let rec fib_rec (a : int) (b : int) (i : int) (n : int) : int =

2 requires { 0 <= i /\ i <= n }

3 requires { a = fib i /\ b = fib (i+1) }

4 variant { n - i }

5 ensures { ... }

6 if i < n

7 then let b’ = a + b in

8 let a’ = b’ - a in

9 let i’ = i + 1 in

10 fib_rec a’ b’ i’ n

11 else ...

In general, the ensures clause in such a recursive function will summarize what we
know from the loop invariant and the failure of the guard condition. In this example
we just return a and state that it should be fib n; no other variables inside the loop
will be relevant or needed by the caller. The assertion before the return just becomes a
corresponding assertion.

1 let rec fib_rec (a : int) (b : int) (i : int) (n : int) : int =

2 requires { 0 <= i /\ i <= n }

3 requires { a = fib i /\ b = fib (i+1) }

4 variant { n - i }

5 ensures { result = fib n }

6 if i < n

7 then let b’ = a + b in

8 let a’ = b’ - a in

9 let i’ = i + 1 in

10 fib_rec a’ b’ i’ n

11 else assert { i = n } ;

12 a

It remains to translate the part of the function leading up to the loop. This “top level”
function fib top retains the pre- and post-conditions from the original function f , and
also translates assignable variable to variable bindings.

1 let fib_top (n : int) : int =

2 requires { n >= 0 }

3 ensures { result = fib n }

4 let i = 0 in

5 let a = 0 in

6 let b = 1 in

7 fib_rec a b i n

Note that, as indicated before, the call to fib rec has to establish its precondition,
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which is the same as establishing that the loop invariant holds initially in the imper-
ative code.

You can find the complete (fully verified) live code for this example at fib.mlw. We
can clean up the code a little bit to avoid unnecessary intermediate bindings.

1 let rec fib_rec (a : int) (b : int) (i : int) (n : int) : int =

2 requires { 0 <= i /\ i <= n }

3 requires { a = fib i /\ b = fib (i+1) }

4 variant { n - i }

5 ensures { result = fib n }

6 if i < n

7 then fib_rec b (a + b) (i + 1) n

8 else a

9

10 let fib_top (n : int) : int =

11 requires { n >= 0 }

12 ensures { result = fib n }

13 fib_rec 0 1 0 n

5 Verifying Properties of Data Structures

For the moment, we’ll stay in the functional world, although in WhyML we use data
structures similarly also in imperative programs. There is a clever implementation of
queues in a functional language using two stacks (usually directly represented by lists),
sometimes called functional queues. If the queue is used in a single-threaded way (that
is, we don’t dequeue from a queue in the same state more than once) then amortized
analysis shows that both enqueue and dequeue operations have constant amortized
cost.

The basic algorithmic idea is as follows. The queue is represented by two lists, the
front and the back. Initially both are empty. When we enqueue, we add elements to the
back, and when we dequeue, we take them from the front. If the front happens to be
empty when a dequeue request comes in we reverse the back to become the new front.
For example, after enqueuing 1, 2, 3 in that order, the front is still empty and the back
will be the list [3, 2, 1]. If we now dequeue, the front will become [1, 2, 3] (the reverse of
the back) and we remove 1 from the front, leaving it [2, 3] with the back empty.

To represent the queue, we see a couple of new constructs. One of them is polymor-
phism because we would like queues to be generic in the types of the elements. In
particular, the type queue ’a will be a queue with elements of type ’a (usually pro-
nounced alpha). We also need lists, which we can find in the Why3 Standard Library.
Among many other things, we find:

1 type list ’a = Nil | Cons ’a (list ’a)

2

3 let rec function (++) (l1 l2: list ’a) : list ’a =

4 match l1 with

5 | Nil -> l2

6 | Cons x1 r1 -> Cons x1 (r1 ++ l2)

7
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8 let rec function reverse (l: list ’a) : list ’a =

9 match l with

10 | Nil -> Nil

11 | Cons x r -> reverse r ++ Cons x Nil

12 end

We see that lists have constructors Nil and Cons and that we discriminate between
lists using the expression match ... with ... end. We use a record of two elements,
the front and the back, as our representation of queues.

1 type queue ’a = { front : list ’a ; back : list ’a }

We would like to define the following functions

1 empty () : queue ’a

2 enq (x : ’a) (q : queue ’a) : queue ’a

3 deq (q : queue a) : option (’a , queue ’a)

A queue might be empty, so deq returns and optional pair consisting of the first ele-
ment and the remainder of the queue. For this we need the option library:

1 type option ’a = None | Some ’a

Before we write code, we should decide on the specifications. The key idea is that we
use a single list to represent the queue, with the first element in the queue at the front of
the list. In other words, we use another data structure (a list) in the specification of the
behavior of the queue. Of course, we do not want to use such a list as an implementation
because the cost of an enqueue operation would be linear in the size of the queue (rather
than have amortized constant cost). Therefore we define the function sequence that
represents the state of a queue in the proper sequence. Recall that because we add the
elements to the back, to represent the proper state of the queue we have to reverse the
back.

1 function sequence (q : queue ’a) : list ’a = q.front ++ reverse q.back

Now let’s write the postconditions for all of the functions. They have no precondition
since any state of the queue is valid. The ones for empty and enq are fairly straightfor-
ward. For the enqueue operation we add the new element to the end of the sequence.

1 let empty () : queue ’a =

2 ensures { sequence result = Nil }

3 ...

4

5 let enq (x : ’a) (q : queue ’a) : queue ’a =

6 ensures { sequence result = sequence q ++ Cons x Nil }

7 ...

8

9 let deq (q : queue ’a) : option (’a , queue ’a) =

For the dequeue operation, we have to return Nil if the queue is empty and Some (x, r)
if x is at the front of the queue and r is the remainder. Writing this out logically, we use
an existential quantifier.
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1 let deq (q : queue ’a) : option (’a , queue ’a) =

2 ensures { (result = None /\ sequence q = Nil)

3 \/ ( exists x:’a. exists r:queue ’a. result = Some(x,r)

4 /\ sequence q = Cons x (sequence r)) }

At this point the code itself is not too difficult, just for the case of enqueue we nest
two matches because if the front is empty the queue is empty only if the back is also
empty. We show the code here; it can also be found in queue.mlw.

1 module Queue

2

3 use list.List

4 use list.Append

5 use list.Reverse

6 use option.Option

7

8 type queue ’a = { front : list ’a ; back : list ’a }

9

10 function sequence (q : queue ’a) : list ’a =

11 q.front ++ reverse q.back

12

13 let empty () =

14 ensures { sequence result = Nil }

15 { front = Nil ; back = Nil }

16

17 let enq (x : ’a) (q : queue ’a) : queue ’a =

18 ensures { sequence result = sequence q ++ Cons x Nil }

19 { front = q.front ; back = Cons x q.back }

20

21 let deq (q : queue ’a) : option (’a , queue ’a) =

22 ensures { (result = None /\ sequence q = Nil)

23 \/ ( exists x:’a. exists r:queue ’a. result = Some(x,r)

24 /\ sequence q = Cons x (sequence r)) }

25 match q.front with

26 | Nil -> match reverse q.back with

27 | Nil -> None

28 | Cons x b -> Some (x, { front = b ; back = Nil })

29 end

30 | Cons x f -> Some (x, { front = f ; back = q.back })

31 end

32

33 end

While the code and specifications seem correct, we cannot be 100% confident that the
prover will be able to verify it. In particular, the reasoning depends on the lemmas in
the libraries pertaining to the properties of append (‘++’) and reverse. Fortunately, in
this case it succeeds. Just for variety, we tried it with the CVC4 prover.

% why3 prove -P cvc4 queue.mlw

queue.mlw Queue empty’vc: Valid (0.04s, 6867 steps)

queue.mlw Queue enq’vc: Valid (0.05s, 7687 steps)

queue.mlw Queue deq’vc: Valid (0.08s, 13374 steps)

%
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6 Some Examples of Verified Systems

There are many examples of impressive verification efforts, but software verification
is certainly not a routine industrial practice. We give here an entirely subjective list of
efforts we found particularly interesting. They use a variety of languages and theorem
proving environments.

• Flyspeck, a formal proof of Kepler’s Conjecture which was first stated in 1611 and
final proven by Thomas Hales with the help of a computer program in 1998. The
proof was questioned and subsequently formally verified in a large community
effort led by Hales. It was completed in 2014.

• CompCert, a formally verified compiler for a large subset of ANSI C.

• CakeML, a formally verified compiler for a functional language in the ML family.

• CertiKOS, a certified Kit Operating System.

• Everest, a project towards a verified implementation of the HTTPS protocol ecosys-
tem.

• CLI System Stack, an early successful effort to verify a system stack from a high-
level language through a compiler all the way to hardware verified at the gate
level, described in a collection of papers.
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