
Mini-Project 2
Decision Procedures

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Tuesday, May 4, 2021 (checkpoint)
23:59pm, Thursday, May 13, 2021 (final)

250 pts

You should pick one of the following two alternative mini-projects. You may, but are not
required to, do this assignment with a partner.

The mini-projects have two due dates:

• Checkpoint at 23:59pm, Tue May 4, 2021 (150 pts)

• Final projects at 23:59pm, Thu May 13 2021 (100 pts)

No late days may be used neither on the checkpoint nor on the final portion of the project. You
may recover up to 60% of the points you lost at the checkpoint if you revise the first part with your
final submission.

The mini-project must be submitted electronically on Gradescope. Please carefully read the
policies on collaboration and credit on the course web pages at http://www.cs.cmu.edu/~15414/
S21/assignments.html.

If you are working with a partner, only one of the two of you needs to submit to each Grade-
scope assignment. Once you have uploaded a submission, you should select the option to add
group members on the bottom of the screen, and add your partner to your submission. Your
partner should then make sure that they, too, can see the submission.

As before, we give the advice that: Elegance is not optional! For writing verified code,
this applies to both: the specification and the implementation.

MINI-PROJECT 2 250 PTS

http://www.cs.cmu.edu/~15414/S21/assignments.html
http://www.cs.cmu.edu/~15414/S21/assignments.html


Decision Procedures MP2.2

The Code

In each problem, we provide some suggested module outlines, but your submitted modules may
be different. For example, where we say ‘let’ it may actually be ‘let rec’, or ‘function’, or
‘predicate’, etc. You may also modify the order of the functions or provide auxiliary types and
functions. You may also change the type definitions or types of the function, but in this case, you
should justify the change in your writeup.

The Writeup (30 pts)

The writeup should consist of the following sections:

1. Executive Summary. Which problem did you solve? Did you manage to write and verify all
functions? If not, where did the code or verification fall short? Which were the key decisions
you had to make? What ended up being the most difficult and the easiest parts? What did
you find were the best provers for your problem? What did you learn from the effort?

2. Code Walk. Explain the relevant or nontrivial parts of the specification or code. Point out
issues or alternatives, taken or abandoned. Quoting some code is helpful, but avoid “core
dumps.” Basically, put yourself into the shoes of a professor or TA wanting to understand
your submission (and, incidentally, grade it).

3. Recommendations. What would you change in the assignment if we were going to reuse it
again next year?

Depending on how much code is quoted, we expect the writeup to consist of about 3-5 pages in
the lecture notes style.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file mp2.zip to MP2 Checkpoint (Code) for the checkpoint and to MP2 Final
(Code) for the final handin. We will be looking for files unit-sat.mlw (SAT option) and
cong-bare.mlw and cong-path.mlw (Congruence Closure option). Use make handin to cre-
ate the handin file.

• Submit a PDF containing your final writeup to MP2 Final (Written). There is no checkpoint
for the written portion of the assingment. You may use the file mp2-sol.tex as a template
and submit mp2-sol.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the writeup to be typeset in LaTeX, but as long as you hand in a readable PDF with
your solutions it is not a requirement. We package the assignment source mp2.tex and a solution
template mp2-sol.tex in the handout to get you started on this.

MINI-PROJECT 2 250 PTS



Decision Procedures MP2.3

1 SAT Solver

A SAT solver uses a decision procedure to establish the satisfiability of a propositional formula.
The goal of this project is to implement a SAT solver based on DPLL and unit propagation that
takes a formula in conjunctive normal form as an input and decides whether or not it is satisfiable
by enumerating every possible valuation of its variables.

A reminder on DPLL and unit propagation. We define a partial valuation as a partial function
from variable identifiers to booleans. A variable that is not mapped to a value is said to be unas-
signed. Besides, a literal xi or ¬xi is said to be unassigned if and only if xi is unassigned. Given a
partial valuation, a clause is said to be

• satisfied if one or more of its literals are satisfied

• conflicting if all its literals are assigned but not satisfied

• unit if it is not satisfied and all but one of its literals are assigned

• unresolved otherwise.

The DPLL algorithm enhances a naive backtracking search algorithm by implementing an opti-
mization called unit propagation: if a clause becomes unit during the search process, it can only be
satisfied by making its unique unassigned literal true and so no branching is necessary. In prac-
tice, this rule often applies in cascade, which can reduce the search space greatly. An example run
of the DPLL algorithm is shown Figure 1.

F =

C0︷ ︸︸ ︷
(x2 ∨ x3) ∧

C1︷ ︸︸ ︷
(¬x1 ∨ ¬x3) ∧

C2︷ ︸︸ ︷
(¬x1 ∨ ¬x2 ∨ x3) ∧

C3︷ ︸︸ ︷
(x0 ∨ x1 ∨ ¬x3) ∧

C4︷ ︸︸ ︷
(¬x0 ∨ x1 ∨ x3)

Step Partial valuation
Start with an empty partial valuation. {}
Decide x0. {x0 7→ true}

Decide x1. {x0 7→ true, x1 7→ true}
Propagate ¬x3 from unit clause C1. {x0 7→ true, x1 7→ true, x3 7→ false}
Propagate x2 from C0. {x0 7→ true, x1 7→ true, x3 7→ false, x2 7→ true}
Clause C2 is conflicting. Backtracking. {x0 7→ true}

Decide ¬x1. {x0 7→ true, x1 7→ false}
Propagate x3 from C4. {x0 7→ true, x1 7→ false, x3 7→ true}
Every clause is satisfied: F is satisfiable. {x0 7→ true, x1 7→ false, x3 7→ true, x2 7→ ∗}

Figure 1: Unit propagation in action

More details about the DPLL algorithm and unit propagation are available in Lecture 12 notes.

MINI-PROJECT 2 250 PTS

https://www.cs.cmu.edu/~15414/lectures/12-sat-solving.pdf


Decision Procedures MP2.4

1.1 SAT solver with partial valuations (Checkpoint:,150 pts)

In Assignment 5, you specified and implemented some simple operations that can be performed
over formulas in CNF. In that assignment you considered complete valuations, however, in prac-
tice a SAT solver uses partial valuations. In this project, we will start by considering the same
types as before. You may reuse any code from Assignment 5. All code that you write for the
checkpoint should be in the module Sat.

1 type var = int

2 type lit = { var : var ; polarity : bool }

3 type clause = list lit

4 type cnf = { clauses : array clause ; nvars : int }

5 type valuation = array bool

Partial valuations. A variable in a partial valuation can take values True or False if it is assigned
a value, or None if is unassigned. A complete valuations relates a with partial valuation as follows.
A partial valuation is said to be compatible with a valuation ρ if both agree on every variable which
is assigned by p. In particular, an empty partial valuation is compatible with any valuation.

1 type pval = array (option bool)

2

3 predicate compatible (pval : pval) (rho : valuation) =

4 forall i:int, b:bool. 0 <= i < length pval ->

5 pval[i] = Some b -> rho[i] = b

Task 1 (10 pts). A partial valuation that satisfies a CNF formula can be extended to a complete
valuation by assigning the unassigned variables to any truth value. Implement, specify and verify
a function extract_sat_valuation that given a partial valuation pval that satisfies the formula
cnf returns a complete valuation that also satisfies the formula cnf.

1 let extract_sat_valuation (pval : pval) (cnf : cnf) : valuation

Task 2 (30 pts). Implement, specify and verify a function partial_eval_clause that takes a partial
valuation p along with a clause C as its arguments and returns:

• [Satisfied] if and only if p satisfies C

• [Conflicting] if and only if p and C are conflicting

• [Unresolved] in every other case.

This corresponds to the following type and function definition:
1 type clause_status =

2 | Satisfied

3 | Conflicting

4 | Unresolved

5

6 let rec partial_eval_clause (p : pval) (c : clause) : clause_status

Task 3 (30 pts). Implement, specify and verify a function partial_eval_cnf that takes a partial
valuation p along with a CNF formula cnf as its arguments and returns:

• [Sat] if and only if p satisfies every clause of cnf . In this case, cnf is true for every valuation
that is compatible with p and the search can stop.

MINI-PROJECT 2 250 PTS

https://www.cs.cmu.edu/~15414/assignments/asst5.pdf


Decision Procedures MP2.5

• [Conflict] if p is conflicting with at least one clause of cnf . In this case, cnf is false for every
valuation that is compatible with p and backtracking is needed.

• [Other] in every other case.

Your partial eval cnf function should raise an exception Conflict found when a conflict is
found. You do not need to find all conflicts and return an exception in the first conflict you find.

This corresponds to the following type and function definition:
1 exception Conflict_found

2

3 type cnf_status =

4 | Sat

5 | Conflict

6 | Other

7

8 let partial_eval_cnf (p : pval) (cnf : cnf) : cnf_status

Task 4 (10 pts). Implement, specify and verify a backtrack function. Recall that in the DPLL
algorithm, when a conflict arises during search, one has to backtrack before the last decision point.
A naive way to do so would be to create a full copy of the current partial valuation every time a
choice is made but this would be terribly inefficient. A better alternative is to maintain a list of
every variable that has been assigned since the last decision point and to use this list as a reference
for backtracking.

Let p and p′ two partial valuations and l a list of variables. We say that l is a delta from p to p′

if p and p′ agree outside of l and the variables of l are unassigned in p. This can be formalized as
follows:

1 predicate delta (diff : list var) (pval pval’ : pval) =

2 (length pval = length pval’) /\

3 (forall v:var. mem v diff -> 0<=v< length pval /\ not (assigned pval v)) /\

4 (forall v:var. 0<=v< length pval -> not (mem v diff) -> pval[v] = pval’[v])

Then, we can define a function backtrack that restores an older version of a partial valuation
given a delta from this older version to the current one:

1 let rec backtrack (diff : list var) (pval : pval) (ghost old_pval : pval)

Note that old_pval is a ghost argument, which means that it will be eliminated during compila-
tion. Therefore, it cannot be used in the body of backtrack but only in its specification. However,
as opposed to diff and pval, it can be instantiated with ghost code.

Task 5 (10 pts). Implement, specify, and verify a function set_value that takes as its arguments
an unassigned literal l and the current partial valuation p. It updates p by setting literal l to true.
Besides:

• It raises a Sat_found exception in case the CNF becomes satisfied.

• It returns a tuple whose first component is a boolean that is true if and only if a conflict was
reached and whose second component is the delta of p (in this case since only one variable
is assigned the delta will correspond to the variable l.var).

1 exception Sat_found

2

3 let set_value (l : lit) (pval : pval) (cnf : cnf) : (bool, list var)

MINI-PROJECT 2 250 PTS



Decision Procedures MP2.6

Task 6 (60). Implement, specify, and verify a function sat that uses partial valuations and puts all
the previous pieces together to prove the satisfiability of a propositional formula. In particular,
this function should satisfy the following contract.

1 let sat (cnf : cnf) : option valuation =

2 ensures { forall rho:valuation. result = Some rho -> sat_with rho cnf }

3 ensures { result = None -> unsat cnf }

1.2 SAT solver with unit propagation (Final Submission, 70 pts)

We now extend the previous implementation of the SAT solver with unit propagation. This will
allow your solver to be more efficient since it can backtrack earlier because it may find conflicts
earlier when propagating unit literals. All code that you write from this point forward should be
in the module UnitSat. You can copy the previous functions before doing the modifications that
are required below.

Task 7 (5 pts). To perform unit propagation, we need to capture the notion of unit clause. Mod-
ify and verify the function partial_eval_clause when considering an extension of the type
clause status that includes Unit lit, i.e. that returns:

• [Unit l] if c is a unit clause with unassigned literal l (for partial valuation p)

The updated type of clause status is:

1 type clause_status =

2 | Satisfied

3 | Conflicting

4 | Unit lit

5 | Unresolved

Task 8 (5 pts). Modify and verify the function partial_eval_cnf to consider unit clauses, i.e.:

• [Unit clause l] only if cnf admits a unit clause whose unassigned literal is l. If cnf ad-
mits more than one unit clause, which one is featured in the argument of Unit clause is
unspecified.

Your partial eval cnf function should raise an exception Unit found when a unit clause is
found. You do not need to find all unit clauses and can return an exception in the first unit clause
you find. The updated type for cnf_status is:

1 exception Conflict_found

2 exception Unit_found lit

3

4 type cnf_status =

5 | Sat

6 | Conflict

7 | Unit_clause lit

8 | Other

Task 9 (40 pts). Specify, implement and verify a function set_and_propagate with the the follow-
ing signature:

1 let rec set_and_propagate (l : lit) (pval : pval) (cnf : cnf) :

2 (bool, list var)

MINI-PROJECT 2 250 PTS



Decision Procedures MP2.7

This function takes as its arguments an unassigned literal l and the current partial valuation
p. It updates p by setting literal l to true and then recursively performing unit propagation until a
conflict is reached or no unit clause remains. Besides:

• It raises a Sat_found exception in case the CNF becomes satisfied.

• It returns a tuple whose first component is a boolean that is true if and only if a conflict was
reached and whose second component is the delta of p (the list of every variable that was
assigned during the call to set_and_propagate).

To go back to the example of Figure 1, calling set and propagate for literal x1 and with pval =
{x0 7→ true} updates pval to {x0 7→ true, x1 7→ true, x3 7→ false, x2 7→ true} and returns the
tuple (true, [2, 3, 1]).

Proving termination. In the template, you will find a lemma numof decreases that may be use-
ful for proving termination of the unit propagation procedure. This lemma states that when you
modify an array by updating a single cell from a value v to a different value, the number of oc-
currences of v in this array decreases by one. To count the number of occurrences of v in an array,
you can use the provided function total numof.

1 function total_numof (t : array (option bool)) (v : option bool) : int =

2 numof t v 0 (length t)

Because numof is defined by a set of axioms, numof and total_numof cannot be used in code
and must only appear in annotations.

Task 10 (20 pts). Modify and verify the sat function to call set_and_propagate and the modified
functions above. Note that the function set_and_propagate will replace the previous function
set_value in your new implementation of your SAT solver.

The signature of sat should remain the same as before:

1 let sat (cnf : cnf) : option valuation =

2 ensures { forall rho:valuation. result = Some rho -> sat_with rho cnf }

3 ensures { result = None -> unsat cnf }

1.3 Writeup (Final Submission, 30 pts)

Task 11 (30 pts). Writeup, to be handed in separately as file mp2-sol.pdf.

MINI-PROJECT 2 250 PTS



Decision Procedures MP2.8

2 A Proof-Producing Decision Procedure

Decision procedures and theorem provers are complex software artifacts and, even with the best
technology, verifying their correctness may be infeasible. Unsurprisingly, many implementations
have been shown to have bugs which may erode confidence in their use during software verifica-
tion. To restore this trust there is an interesting intermediate point: we can instrument a decision
procedure to produce not just a yes or no answer, but also a proof object in case a given formula is
valid. This proof object should be easy to check for correctness with a simple program, so we can
trust at least a yes answer if we trust only the small checker. In general terms, this is an example of
result checking [Blum & Kannan 1989]; in theorem proving it is closely intertwined with the origins
of ML [Gordon et al. 1978].

In this mini-project, we explore a variation on this theme. We first implement a decision pro-
cedure for congruence closure and then instrument it with contracts that verify that it can produce
a proof of any equality it affirms. As such, you prove a specific form of partial correctness.

2.1 Implementing Congruence Closure (Checkpoint, 150 pts)

You may want to review the description of congruence closure in Lecture 17 or other online infor-
mation you find helpful. We will implement incremental congruence closure in which equations are
asserted one by one and equality can be checked at any time. So at the high level we would have
the following interface:

1 type eqn

2 type cc

3 let cc_new (n : int) : cc

4 let merge (cc : cc) (e : eqn) : unit

5 let check_eq (cc : cc) (e : eqn) : bool

where cc is the type of the data structure maintaining the congruence closure, and cc new n creates
a new data structure over constants 0, . . . , n− 1 where each element is only equal to itself.

merge cc e updates cc to incorporate the equation e, and check eq cc e returns true if the equation
e follows from the equations asserted so far and the standard inference rules in the theory of
equality with uninterpreted function symbols (namely: reflexivity, symmetry, transitivity, and
monotonicity).

2.1.1 Representation of Terms

We reuse the implementation of union-find from Assignment 7. This means it is convenient to
represent all constants as integers 0, . . . , n − 1. For a maximally streamlined implementation we
represent all terms in Curried form.

1 type const = int

2 type term = Const const | App term term

Here are some examples, using a = 1, b = 2, etc.

Term Curried WhyML
c c Const 3
f(a) (f a) (App (Const 6) (Const 1))
f(g(a), b) ((f (g a)) b) (App (App (Const 6) (App (Const 7) (Const 1))) (Const 2))

MINI-PROJECT 2 250 PTS

http://www.cs.cmu.edu/~15414/S21/17-smt-theories.pdf
http://www.cs.cmu.edu/~15414/S21/assignments/asst7.pdf


Decision Procedures MP2.9

During congruence closure and other operations we need to consider equality between subterms
of the input. In order to support this in a simple and efficient way we translate terms to so-called
flat terms using new constants that act as names for the subterms. For example, the term f(g(a), b)
(or ((f (g a)) b) in Curried form) might have the name c3 with the definitions

c1 = g a
c2 = f c1
c3 = c2 b

This representation means we only have to consider two kinds of equations in our algorithm,
c = (App a b) for constants a and b and a = b.

1 type const = int

2 type eqn =

3 | Defn const const const (* c = App a b *)

4 | Eqn const const (* a = b *)

2.1.2 The Incremental Congruence Closure Algorithm

In order to accommodate the definitions above, we slightly modify the interface.

1 module CongBare

2

3 use ...

4

5 type const = int

6 type eqn =

7 | Defn const const const (* c = app a b *)

8 | Eqn const const (* c = a *)

9

10 use UnionFindBare as U

11

12 type cc = { size : int ;

13 uf : U.uf ;

14 mutable eqns : list eqn }

15

16 let cc_new (n : int) : cc

17 let merge (cc : cc) (e : eqn) : unit

18 let check_eq (cc : cc) (a : const) (b : const) : bool

19

20 end

Here, UnionFindBare is your bare implementation from Assignment 7. You may make minor mod-
ifications and extensions to its interface for the purposes of this mini-project.

The field cc.uf should be a union-find data structure over the constants 0 ≤ c < cc.size and
cc.eqns should be a list of the equations you need for the computation of your algorithm.

At a high level, merge cc e should assert the equation e. This proceeds in two phases. In the
first phase, we suitably update cc.uf and cc.eqns to join equivalence classes. In the second phase,
we repeatedly propagate the equality to create a representation of the congruence closure.

The function check eq cc a b should just consult the union-find data structure to see if a and b
are in the same equivalence class.

MINI-PROJECT 2 250 PTS



Decision Procedures MP2.10

Your implementation does not need to be particularly efficient, but it should be polynomial.
Furthermore, we constrain it to use union-find to maintain equivalence classes so that further stan-
dard improvements would be straightforward to make. Such further improvements are generally
related to indexing to avoid searching through lists.

Your contracts should be sufficient for safety of all array accesses, but do not otherwise have to
express correctness. Furthermore, you do not need to ensure termination.

As a consequence, you will need to test your implementation, and we will do so as well while
grading. In order to facilitate our testing harness, you must adhere to the significant parts of the
interface (namely, types const and eqn, and the types of the functions cc new, merge, and check eq).
You may, however, modify or add fields to the cc structure, since testing will not rely on these
internals.

Task 12 (130 pts). Implement and verify the safety the CongBare module as specified above.

Task 13 (20 pts). Test your implementation on several examples that exercise multiple aspects of
the implementation, including the iterative nature of the propagation phase of the algorithm. You
should have at least 5 distinct examples.

You should hand in file cong-bare.mlw with modules UnionFindBare, CongBare, and Test.

2.2 Instrumenting Congruence Closure (Final Submission, 45 pts)

For the final submission you will have to produce and verify the correctness of proofs of equal-
ity. We reuse here the abstract type of path in the union-find data structure, extended with two
new constructors: hyp e and mono p q e e′ to represent hypotheses (assumptions) and the rule of
monotonicity.

hyp (Eqn a b) is a path from a to b. This will be used if the client asserts an equation a = b by
calling merge cc (Eqn a b).

mono p q (Defn c a b) (Defn c′ a′ b′) is a path from c to c′, if p is a path from a to a′ and q is a path
from b to b′. This will be used if the algorithm uses monotonicity to conclude App a b = App a′ b′

from the equalities a = a′ and b = b′.
Note that any equation used as an argument to hyp and mono should be one directly passed

into merge. This could be enforced in a complicated manner with an additional layer of abstraction,
but we forego this complication since the client can still check separately that all uses of hyp and
mono in a path rely only on equations it asserted.

1 module CongPath

2

3 use ...

4

5 type const = int

6

7 type eqn =

8 | Defn const const const (* c = app a b *)

9 | Eqn const const (* c = a *)

10

11 use UnionFindPath as U

12

13 function hyp (e : eqn) : U.path

14 axiom c_hyp : forall a b.

15 U.connects (hyp (Eqn a b)) a b

16

MINI-PROJECT 2 250 PTS



Decision Procedures MP2.11

17 function mono (p : U.path) (q : U.path) (e : eqn) (e’ : eqn) : U.path

18 axiom c_mono : forall p q a a’ b b’ c c’.

19 U.connects p a a’ -> U.connects q b b’ -> U.connects (mono p q (Defn c a b)

(Defn c’ a’ b’)) c c’

20

21 type cc = { size : int ;

22 uf : U.uf ;

23 mutable eqns : list eqn }

24

25 let cc_new (n : int) : cc

26 let merge (cc : cc) (e : eqn) : unit

27 let check_eq (cc : cc) (a : const) (b : const) : (bool, ghost (option U.path)

)

28

29 end

We do not supply a path to merge since the merge function itself can construct it, as explained
above.

For this instrumentation you may arbitrarily change your bare implementation, except that
you should use your UnionFindPath from Assignment 7 (again, modified as needed).

Note that your contracts should guarantee two things: (1) safety (as before) and (2) the path
provided with the result of check eq cc a b when a and b are in fact equal, must go from a to b.

Task 14 (45 pts). Add paths to serve as proof objects to your implementation as specified above.

2.3 Simplifying Paths (Final Submission, 25 pts)

The paths that represent proofs of equality constructed by union-find can be rather large. How-
ever, using “smart constructors” we can eliminate redundancies to create more compact paths.
Obviously, this would only be relevant if we wanted to check paths for correctness externally,
which is one way to use proof-producing decision procedures. In this task you will write some
constructors to eliminate redundancies. We will not integrate this into our decision procedure,
although it should be clear how this could be done.

For simplicity, in this task we are only concerned with with proofs of equalities (functions refl,
sym, and trans) but not monotonicity (function mono). A key observation is that these constructors
form a group over the equality assumptions hyp e for equations e. We have the following interpre-
tation

Paths Groups
Hyp (Eqn a b) xab element
Refl a 1 unit element
Sym p p−1 inverse
Trans p b q p ∗ q multiplication

with the laws
p ∗ 1 = p = 1 ∗ p
p ∗ p−1 = 1 = p−1 ∗ p
(p ∗ q) ∗ r = p ∗ (q ∗ r)

We would like to transform paths into a standard form where

1. Refl appears only at the top level, and

MINI-PROJECT 2 250 PTS



Decision Procedures MP2.12

2. Sym p is allowed only for hypotheses p.

Task 15 (25 pts). Complete the following definitions

1 module Path

2

3 type elem = int

4 type eqn = Eqn elem elem

5 type path =

6 | Hyp eqn (* = x_ab *)

7 | Refl elem (* = 1 *)

8 | Sym path (* = p^-1 *)

9 | Trans path elem path (* = p * q *)

10

11 predicate std (p : path)

12

13 let refl a =

14 ensures { std result }

15

16 let trans p b q =

17 requires { std p /\ std q }

18 ensures { std result }

19

20 let sym p =

21 requires { std p }

22 ensures { std result }

23

24 end

Your functions should also be such that refl corresponds to Refl, sym to Sym, and trans to Trans.
For example, if trans p b q where p is a path from some a to b and q is a path from b to some c,
then the result should be a path from a to c. However, we won’t bother verifying this, only that
certain redundancies are avoided. We could then implement another pass that cancels xab ∗ x

−1
ab

and x−1ab ∗ xab if we are interested in shortest possible paths.
You should hand in file cong-path.mlw with modules UnionFindPath, CongPath, and Path.

Since why3 execute does not allow (most?) ghost expressions, you would have to use why3 extract

and the OCaml compiler to test your instrumented code, which we do not require.

2.4 Writeup (Final Submission, 30 pts)

Task 16 (30 pts). Writeup, to be handed in separately as file mp2-sol.pdf.

MINI-PROJECT 2 250 PTS


	SAT Solver
	SAT solver with partial valuations (Checkpoint:,150 pts)
	SAT solver with unit propagation (Final Submission, 70 pts)
	Writeup (Final Submission, 30 pts)

	A Proof-Producing Decision Procedure
	Implementing Congruence Closure (Checkpoint, 150 pts)
	Representation of Terms
	The Incremental Congruence Closure Algorithm

	Instrumenting Congruence Closure (Final Submission, 45 pts)
	Simplifying Paths (Final Submission, 25 pts)
	Writeup (Final Submission, 30 pts)


