
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
CTL model checking

Matt Fredrikson

Carnegie Mellon University
Lecture 23

1 Introduction

Linear temporal logic is a very important logic for model checking [?, ?, ?] but has the
downside that its verification algorithms are rather complex. To get a good sense of
how model checking works, we, thus, consider the closely related but different(!) Com-
putation Tree Logic (CTL) instead. Both LTL and CTL are common in model checking
even if they have different advantages and downsides.

The main point about LTL is that its semantics fixes a trace and then talks about
temporal properties along that particular trace. CTL instead switches to a new trace
every time a temporal operator is used. CTL has the advantage of having a pretty
simple model checking algorithm.

2 Core Insights

The following lemma exploits the fact that every state has a successor in computation
structures, so some next state is always defined.

Lemma 1 (Next remainders). The following are sound axioms for the computation structures
of CTL:

(EG) EGP ↔ P ∧EXEGP

(EF) EFP ↔ P ∨EXEFP

(EU) EUPQ ↔ Q ∨ P ∧EXEUPQ

(AU) AUPQ ↔ Q ∨ P ∧AXAUPQ

15-414 LECTURE NOTESMATT FREDRIKSON

http://www.cs.cmu.edu/~15414

L23.2 CTL model checking

3 CTL Model Checking Algorithm

The idea behind model checking is to exploit finiteness of the state spaces to directly
compute the semantics of the formulas.

Given a finite computation structure K = (W,↷, v) the CTL model checking algo-
rithm computes the set of all states of K in which CTL formula ϕ is true:

[[ϕ]]
def
= {s ∈ W : s |= ϕ}

The CTL model checking algorithm for a computation structure K = (W,↷, v) com-
putes this set [[ϕ]] by directly following the semantics in a recursive function along the
equations in this lemma.

Note that we adopt the same notational convention for set union ∪ and intersection ∩
as we did for logical disjunction ∨ and conjunction ∧ namely that ∩ and ∧ bind stronger:

P ∨Q ∧R ≡ P ∨ (Q ∧R)

X ∪ Y ∩ Z = X ∪ (Y ∩ Z)

Theorem 2 (CTL model checking). In computation structures, the set [[ϕ]] of all states that
satisfy CTL formula ϕ satisfies the following equations:

1. [[p]] = {s ∈ W : v(s)(p) = true} for atomic propositions p

2. [[¬P]] = W \ [[P]]

3. [[P ∧Q]] = [[P]] ∩ [[Q]]

4. [[P ∨Q]] = [[P]] ∪ [[Q]]

5. [[EXP]] = τEX([[P]]) using the existential successor function τEX() defined as follows:

τEX(Z)
def
= {s ∈ W : t ∈ Z for some state t with s ↷ t}

6. [[AXP]] = τAX([[P]]) using the universal successor function τAX() defined as follows:

τAX(Z)
def
= {s ∈ W : t ∈ Z for all states t with s ↷ t}

7. [[EFP]] = µZ.([[P]] ∪ τEX(Z)) where µZ.f(Z) denotes the least fixpoint Z of the opera-
tion f(Z), that is, the smallest set of states satisfying Z = f(Z).

8. [[EGP]] = νZ.([[P]] ∩ τEX(Z)) where νZ.f(Z) denotes the greatest fixpoint Z of the
operation f(Z), that is, the largest set of states satisfying Z = f(Z).

9. [[AFP]] = µZ.([[P]] ∪ τAX(Z))

10. [[AGP]] = νZ.([[P]] ∩ τAX(Z))

15-414 LECTURE NOTES MATT FREDRIKSON

CTL model checking L23.3

11. [[EUPQ]] = µZ.
(
[[Q]] ∪ ([[P]] ∩ τEX(Z))

)
12. [[AUPQ]] = µZ.

(
[[Q]] ∪ ([[P]] ∩ τAX(Z))

)
The correctness argument for the verification algorithm uses the axioms EF,EU to-

gether with the insight that the respective set of states that they characterize are the
smallest set satisfying the respective equivalence. The largest set for EFP satisfying the
equivalence in EF would simply be the entire set of states, which is futile. Likewise, the
smallest set of states for EGP satisfying the equivalence in EG would simply be the
empty set of states, since every state has a successor in a computation structure.

Proof of Theorem 2. The proof is not by induction on the number of states or on the for-
mula because the resulting formulas are not any easier than the original formulas. In-
stead, the proof proves each equation separately. While the proof was left as an exercise
originally [?], some cases are already proved in [?], some more in [?], and a much more
comprehensive proof including the nontrivial case AUPQ that uses König’s lemma is
in [?].

The first cases immediately follow the semantics of atomic propositions, proposi-
tional operators, and EX. The remaining cases separately argue that it is a fixpoint and
then that it is the largest or smallest as indicated.

6. By axiom EF and case 5, the formula EFP satisfies the indicated fixpoint equation:

[[EFP]] = [[P ∨EXEFP]] = [[P]] ∪ τEX([[EFP]])

Showing that it is the least fixpoint is left as an exercise.

7. By axiom EG and case 5, the formula EGP satisfies the fixpoint equation:

[[EGP]] = [[P ∧EXEGP]] = [[P]] ∩ τEX([[EGP]])

In order to show that [[EGP]] is the greatest fixpoint, consider another fixpoint
H = [[P]] ∩ τEX(H) and show that H ⊆ [[EGP]] by considering any state s0 ∈ H
and showing that s0 ∈ [[EGP]]. Since H ⊆ [[P]], it is enough to show that there is
a path s0, s1, s2, . . . such that si ∈ H for all i by induction on i, implying si |= P .

n=0: The base case follows from s0 ∈ H .

n+1: By induction hypothesis sn ∈ H . Thus, sn ∈ H = [[P]]∩ τEX(H), so there is a
state sn+1 with sn ↷ sn+1 and sn+1 ∈ H .

8. By axiom EU and case 5, the formula EUPQ satisfies the fixpoint equation:

[[EUPQ]] = [[Q ∨ P ∧EXEUPQ]] = [[Q]] ∪ [[P]] ∩ τEX([[EUPQ]])

In order to show that [[EUPQ]] is also the least fixpoint, consider another fixpoint
H = [[Q]] ∪ [[P]] ∩ τEX(H) and show that [[EUPQ]] ⊆ H . So consider any s0 ∈
[[EUPQ]] and show that s0 ∈ H . By s0 ∈ [[EUPQ]], there is a path s0, s1, s2, . . .
and an n such that sn |= Q and sj |= P for all 0 ≤ j < n. We prove that sn ∈ H
by induction on n (note that we could also do a backwards induction starting at
n and going backwards to 0).

15-414 LECTURE NOTES MATT FREDRIKSON

L23.4 CTL model checking

n = 0: The base case where n = 0 follows from sn ∈ [[Q]] ⊆ [[Q]] ∪ [[P]]∩τEX(H) = H .

n+1: By induction hypothesis, s1 ∈ H . In order to show that s0 ∈ H = [[Q]] ∪ [[P]]∩
τEX(H), we use that we know s0 |= P and that s0 has a successor s1 ∈ H .
Thus, s0 ∈ [[P]] ∩ τEX(H) ⊆ H .

9. By axiom AU and case 6, the formula AUPQ satisfies the fixpoint equation:

[[AUPQ]] = [[Q ∨ P ∧AXAUPQ]] = [[Q]] ∪ [[P]] ∩ τAX([[AUPQ]])

In order to show that [[AUPQ]] is also the least fixpoint, consider another fixpoint
H = [[Q]] ∪ [[P]] ∩ τAX(H) and show that [[AUPQ]] ⊆ H . So consider any s0 ∈
[[AUPQ]] and show that s0 ∈ H . By s0 ∈ [[AUPQ]], all paths si0, s

i
1, s

i
2, . . . starting

in si0 = s0 have an ni such that sini
|= Q and sij |= P for all 0 ≤ j < ni. Could there

be infinitely many such paths?

Only the prefix of a path till ni matters (because no statement is made beyond
ni). Each such prefix is finite, because the strong until requires Q to eventually
happen and cannot be postponed forever. Without loss of generality, the smallest
respective ni can be assumed on each path, though. So it can be shown that only
finitely many such paths exist as follows. By König’s lemma1, there can only be
finitely many paths till the respective ni, because if there were infinitely many
finite paths of length at most ni, then there would have to be infinite branching
so infinitely many states, but W is finite. For example, there can only be finitely
many paths of length, say, ni = 10 in a finite Kripke structure.

Consequently, since there are only finitely many such paths, the maximum ni is
still a finite natural number n ∈ N, as well (the supremum of infinitely many finite
numbers can be infinite). So we will prove the conjecture by induction on n.

We prove that s0 ∈ H by induction on n.

n = 0: The base case where n = 0 follows from sn ∈ [[Q]] ⊆ [[Q]]∪ [[P]]∩τAX(H) = H .

n+1: By induction hypothesis, all of the finitely many(!) path numbers i satisfy
si1 ∈ H . Since we also have s0 |= P and that i ranges over all successors of s0
that s0 ∈ [[P]] ∩ τAX(H) ⊆ H .

Note that this correctness proof crucially depends on the until condition Q even-
tually happening, so each of the paths is actually finite. The proof does not work
for the weak until, which is also true if Q never becomes true as long as P is true
all the time then.

Since the successor function can be computed by checking off the corresponding
states along the computation structure, the only remaining question is how the least
and greatest fixpoints can be computed. The first good news is that all the functions in
Theorem 2 are monotone, in the sense that if their parts are true in more states then the
expressions themselves are true in more states, too.

1König’s lemma says: every infinite tree has an infinite path or a node with infinitely many branches.

15-414 LECTURE NOTES MATT FREDRIKSON

CTL model checking L23.5

4 How to Compute Monotone Fixpoints

Let ℘(W) denote the set of all subsets of W and let fn by the n-fold composition of
function f so fn+1 is the function mapping Z to f(fn(Z)) and f1 is f . For example,
f3 is the function mapping Z to f(f(f(Z))) The particular special case of the seminal
Knaster-Fixpoint theorem we need here is the following:

Theorem 3 (Knaster-Tarski). Every monotone function f : ℘(W) → ℘(W) has a least and a
greatest fixpoint and both can be found by iteration:

µZ.f(Z) =
⋃
n≥1

fn(∅) νZ.f(Z) =
⋂
n≥1

fn(W)

For complicated functions on infinite sets, the above unions and intersections range
over more than just all natural numbers. But model checking is typically done when
the computation structure is finite. In that case, it is entirely obvious that the union and
intersection only range over finitely many natural numbers. Every time we consider
an additional iteration fn(∅), we either find a new state that was not in the union yet.
Or we do not find such a state but then, since nothing changed, the iterate fn+1(∅)
will not find anything new either. Since there are only finitely many different states
in a finite state set W of a finite computation structure, we can only find new states
finitely often so that the computation terminates. The argument for the intersection is
correspondingly.

Theorem 4 (Complexity). The CTL model checking problem is linear in the size of the state
space K = (W,↷, v) and in the size of the formula ϕ in the sense that it is in O(|K| · |ϕ|) where
|K| = |W |+ |↷|.

5 Example: Mutual Exclusion

Recall the mutal exclusion example introduced in the previous lecture.
The notation in the following transition diagram is nt for: the first process is in the

noncritical section while the second process is trying to get into its critical section.
n noncritical section of an abstract process
t trying to enter critical section of an abstract process
c critical section of an abstract process

Those atomic propositional letters are used with suffix 1 to indicate that they apply to
process 1 and with suffix 2 to indicate process 2. For example the notation nt indicates
a state in which n1 ∧ t2 is true (and no other propositional letters). Consider Kripke
structure

15-414 LECTURE NOTES MATT FREDRIKSON

L23.6 CTL model checking

nn
0

tn

1

cn2

ct

4

tt

3

nt

5

tt

6

tc

8

nc

7

1. Safety: ¬EF(c1 ∧ c2) is trivially true since there is no state labelled ccx.

2. Liveness: AG(t1 → AFc1) ∧AG(t2 → AFc2)

Checking 1 |= t1 → AFc1 alias 1 |= ¬t1 ∨AFc1 first computes subformulas.

[[t1]] = {1, 3, 6, 8}
[[c1]] = {2, 4}

[[¬t1]] = {0, 2, 4, 5, 7}
[[AFc1]] = µZ.([[c1]] ∪ τAX(Z)) =: µZ.f(Z)

f1(∅) = [[c1]] = {2, 4}
f2(∅) = [[c1]] ∪ τAX({2, 4}) = {1, 2, 3, 4}
f3(∅) = [[c1]] ∪ τAX({1, 2, 3, 4}) = {1, 2, 3, 4, 8}
f4(∅) = [[c1]] ∪ τAX({1, 2, 3, 4, 8}) = {1, 2, 3, 4, 6, 8}
f5(∅) = [[c1]] ∪ τAX({1, 2, 3, 4, 6, 8}) = {1, 2, 3, 4, 6, 8} = f4(∅)

[[AFc1]] = {1, 2, 3, 4, 6, 8}
[[¬t1 ∨AFc1]] = {0, 1, 2, 3, 4, 5, 6, 7, 8}

Since 1 ∈ [[¬t1∨AFc1]] CTL model checking confirms 1 |= ¬t1∨AFc1. Since every state
[[¬t1 ∨ AFc1]] equals the set of all states, it is easy to see that model checking will also
eventually find 0 ∈ [[AG(¬t1 ∨AFc1)]]. Consequently it confirms that the initial state 0
satisfies 0 |= AG(¬t1 ∨AFc1).

References

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Core Insights
	CTL Model Checking Algorithm
	How to Compute Monotone Fixpoints
	Example: Mutual Exclusion

