
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Temporal Logic

Matt Fredrikson

Carnegie Mellon University
Lecture 22

Thursday, April 13

1 Introduction

In the previous lecture, we observed a potential difference between whether a data
structure invariant holds literally always at all times during all runs of all its operations
(which is essentially a prerequisite for uncorrupted concurrent usages) compared to
whether the data structure invariant merely holds at the end of each of the operations
if it was true before. On second thought, what we have seen so far was, from the
very semantics, meant as the dynamic logic for proving properties of (all or some) final
states of the program under complete ignorance of what happens in between. There
are ways of augmenting dynamic logics to temporal dynamic logics [BS01, ?, ?] that
provide explicit ways of proving formulas that are true, e.g., always throughout an
execution.

While this works well and continues the deductive verification principles we saw so
far, we will, instead, leverage the motivation of a temporal understanding of programs
as a segway into studying temporal logics [Pri57, Pnu77, Eme90] and their use in model
checking [CES83, QS82, CGP99, BKL08, CES09].

Learning Goals

After this lecture, you will:

• Learn about Kripke structures, a widely-used finite-state structure for modeling
computation in model checking.

• Learn Computation Tree Logic (CTL), a temporal logic that characterizes compu-
tations’ behavior over time in terms of their paths through a Kripke structure.

15-414 LECTURE NOTES Thursday, April 13 MATT FREDRIKSON

http://www.cs.cmu.edu/~15414/s22

L22.2 Temporal Logic

coin
s0

select
s1

coffee
s2

tea
s3

Figure 1: Computation structure describing the operation of a vending machine.

• Understand the semantics of CTL formulas in terms of computation trees that
describe the branches within a Kripke structure that a computation might take.

• See how to model temporal properties using CTL.

2 Modeling Computation Over Time

So far we have always modeled computation with programs, written in a language with
semantics that allow us to reason about their behavior mathematically. In our study of
model checking, we will model computation primarily in terms of transition systems
called Kripke structures, given in Definition 1.

Definition 1 (Kripke structure). A Kripke frame (W,↷) consists of a set W with a transi-
tion relation ↷ ⊆ W ×W where s ↷ t indicates that there is a direct transition from s to
t in the Kripke frame (W,↷). The elements s ∈ W are also called states. A Kripke struc-
ture K = (W,↷, v, I) is a Kripke frame (W,↷) with a mapping v : W → 2V , where 2V

is the powerset of V assigning truth-values to all the propositional atoms in all states.
Moreover, a Kripke structure has a set of initial states I ⊆ W .

A Kripke structure K = (W,↷, v, I) is called a computation structure if W is a finite set
of states and every element s ∈ W has at least one direct successor t ∈ W with s ↷ t.
A (computation) path is an infinite sequence s0, s1, s2, s3, . . . of states si ∈ W such that
si ↷ si+1 for all i. We will always assume that the structures used in model checking
are computation structures, unless otherwise noted.

Example 2. An example of a Kripke structure that represents a vending machine is
shown in Figure 3.

The set of states W represented in Figure 3 are W = {s0, s1, s2, s3}. The propositional
atoms V that appear in those states are V = {coin,select,coffee,tea}. The initial state

15-414 LECTURE NOTES MATT FREDRIKSON

Temporal Logic L22.3

nn
0

tn

1

cn2

ct

4

tt

3

nt

5

tt

6

tc

8

nc

7

Figure 2: Kripke structure for a mutual exclusion protocol.

I = {s0}. The mapping v is represented as follows:

s0 → {coin}
s1 → {select}
s2 → {coffee}
s3 → {tea}

Note that we only show the propositional atoms that are assigned the truth value true
but the remaining atoms would be assigned truth value false. Finally, the transition
relation ↷ is defined as: {s0 ↷ s1, s1 ↷ s2, s1 ↷ s3, s2 ↷ s0, s3 ↷ s0}.

What are examples of properties that we might want to check against such a com-
putation? For one, being able to conclude that the vending machine does not dispense
coffee or tea until after a user produces a coin would be helpful. Likewise, we may want
to check that once a coin has been presented, the machine will eventually dispense some
beverage. These are easy to check by visual inspection of Figure 3. In general, this will
not be the case, as the number of states and transitions comprising a system are too
large to simply inspect. □
Example 3. Figure 2 shows another example of a Kripke structure, which models a mu-
tual exclusion protocol.

This models two abstract processes vying for some resource denoted by a critical
section. The aim of the protocol is to ensure that both processes cannot access the critical
section at the same time. The states denote the current status of each process, which are
either currently in the noncritical section, trying to enter the critical setion, or are in the
critical section. Those atomic propositional letters are used with suffix 1 to indicate that
they apply to process 1 and with suffix 2 to indicate process 2. For example the notation
nt indicates a state in which n1 ∧ t2 is true (and no other propositional letters).

15-414 LECTURE NOTES MATT FREDRIKSON

L22.4 Temporal Logic

One of the properties of interest is obviously the mutual exclusion property itself:
that both processes don’t enter the critical section simultaneously. This is apparent from
Figure 2, where all unreachable states, including c1∧c2, are omitted. A more interesting
property has to do with liveness: once a process tries to enter the critical section, does it
eventually succeed? This is still relatively easy to work out by manually tracing paths
through the states, but already in this small example it becomes apparent that checking
temporal properties may not always be so easy. □

2.1 Paths and Traces

When it comes to the computation paths modeled by Kripke structures, there is a key
distinction to keep in mind. We defined a path as a sequence of states under the transi-
tion relation. We can also refer to the traces of a Kripke structure, by evaluating each of
its paths under the labeling function. So for the structure in Figure 3, the paths would
be:

s0, s1, s2, s0, s1, s2, . . .
s0, s1, s3, s0, s1, s3, . . .
s0, s1, s2, s0, s1, s3, . . .
s0, s1, s3, s0, s1, s2, . . .
...

And the corresponding traces would be:

coin, select , coffee, coin, select , coffee, . . .
coin, select , tea, coin, select , tea, . . .
coin, select , coffee, coin, select , tea, . . .
coin, select , tea, coin, select , coffee, . . .
...

Given a Kripke structure K, we will write Pa(K) to denote its paths, and Tr(K) to
denote its traces. Note that paths and traces may not be in one-to-one correspondence,
as is demonstrated by the following two structures.

a a a

3 Computation Tree Logic

The types of properties discussed in the previous examples all aim to characterize what
takes place in a computation over time. To formally model such properties, we will
rely on temporal logic. Computation Tree Logic (CTL) is a widely-used temporal logic,
which views the computations embodied in Kripke structures in terms of the branching

15-414 LECTURE NOTES MATT FREDRIKSON

Temporal Logic L22.5

a

b c

a

b

a

b
...

a
...

c

c
...

a

b

a
...

c
...

a

b
...

a
...

Figure 3: Kripke structure and its computation tree.

possibilities at each state. Consider the Kripke structure shown on the left in Figure 3.
The tree on the right of the figure represents each of the paths that the computation
could take; for example it always begins in a, and one possible path repeatedly enters
b, then a, b, a, . . . infinitely often. Another path goes directly from a to c, and stays in c
forever.

Formulas in CTL represent properties of paths that are reachable from a given state,
and are thus called state formulas. By convention, when comparing a CTL formula to
a Kripke structure, we always consider the paths reachable from the initial state. CTL
formulas use the E (existential) and A (universal) path quantifiers, which ask whether
there exists a path with a given property, or whether all paths exhibit a given property.

• EP is a state formula where for a given Kripke structure K we have the following:

K, s |= EP ↔ there exists a path π starting at s where π |= P

• AP is a state formula where for a given Kripke structure K we have the following:

K, s |= AP ↔ for all paths π starting at s, π |= P

Path quantifiers are always paired with a path formula, which specifies a property over
a given single path. If P is a state formula, then the following are all path formulas.

• XP : The next state in the path satisfies P .

• GP : All states in the path satisfy P .

• FP : There exists some state on the path that satisfies P .

• P UQ: There exists some state on the path that satisfies Q. Until then, all states
satisfy P .

Putting all of this together, the semantics of the logic is shown in Definition 4.

Definition 4. In a fixed computation structure K = (W,↷, v), the truth of CTL formu-
las in state s is defined inductively as follows:

15-414 LECTURE NOTES MATT FREDRIKSON

L22.6 Temporal Logic

p

q

...
...

...

p

p

q
...

q
...

q

...
...

...
...

...
...

...
...

p
...

Figure 4: Visualization CTL formuls: A[P UQ] (top) and EFP (bottom).

1. s |= p iff v(s)(p) = true for atomic propositions p

2. s |= ¬P iff s ̸|= P , i.e. it is not the case that s |= P

3. s |= P ∧Q iff s |= P and s |= Q

4. s |= AXP iff all successors t with s ↷ t satisfy t |= P

5. s |= EXP iff at least one successor t with s ↷ t satisfies t |= P

6. s |= AGP iff all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P for all i ≥ 0

7. s |= AFP iff all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P for some i ≥ 0

8. s |= EGP iff some path s0, s1, s2, . . . starting in s0 = s satisfies si |= P for all
i ≥ 0

9. s |= EFP iff some path s0, s1, s2, . . . starting in s0 = s satisfies si |= P for some
i ≥ 0

10. s |= A[P UQ] iff all paths s0, s1, s2, . . . starting in s0 = s have some i ≥ 0 such
that si |= Q and sj |= P for all 0 ≤ j < i

11. s |= E[P UQ] iff some path s0, s1, s2, . . . starting in s0 = s has some i ≥ 0 such
that si |= Q and sj |= P for all 0 ≤ j < i

Returning to the notion of computation trees from before, Figure 4 visualizes the
semantics of two CTL formulas.

15-414 LECTURE NOTES MATT FREDRIKSON

Temporal Logic L22.7

3.1 Useful equivalences

Some of the CTL formulas are redundant in the sense that they are definable with other
CTL formulas already. But the meaning of the original formulas is usually much easier
to understand than the meaning of its equivalent.

Lemma 5. The following are valid CTL equivalences:

1. EFP ↔ E[trueUP]

2. AFP ↔ A[trueUP]

3. EGP ↔ ¬AF¬P

4. AGP ↔ ¬EF¬P

5. AXP ↔ ¬EX¬P

6. A[P UQ] ↔ ¬E[¬QU (¬P ∧ ¬Q)] ∧ ¬EG¬Q

Most of these cases except the last are quite easy to prove. So as not to confuse our-
selves, we will definitely make use of the finally and globally operators in applications.
But thanks to these equivalences, when developing reasoning techniques we can sim-
ply pretend next and until would be the only temporal operators to worry about. In
fact, we can even pretend only the existential path quantifier E is used, never the uni-
versal path quantifier A, but this reduction in the number of different operators comes
at quite some expense in the size and complexity in the resulting formulas.

Example 6. Temporal logic is particularly helpful to verify properties of distributed sys-
tems. For example, we may want to reason about safety or liveness. Safety properties
state that “nothing bad would ever happen”, whereas liveness properties state that
“something good always happens”. We will how we can encode safety and liveness
using CTL for a mutual exclusion protocol.

Returning to the mutual exclusion example from before, the properties that we pro-
posed exemplify these ideas. Safety corresponds to the mutual exclusion property: a
“bad thing” happens if both processes ever enter the critical section at the same time.
Liveness corresponds to the deadlock-freedom property: the “good thing” that we
want to happen (infinitely often) is that once a process tries to enter the critical sec-
tion, it will eventually succeed.

1. Safety: ¬EF (c1 ∧ c2) is trivially true since there is no state labelled ccx.

2. Liveness: AG (t1 → AF c1) ∧AG (t2 → AF c2)

□

15-414 LECTURE NOTES MATT FREDRIKSON

L22.8 Temporal Logic

Exercises

1. Write a Kripke structure that models a traffic light that is allowed to blink yellow
for arbitrarily long periods of time. The atomic propositions are G (green), Y
(yellow), R (red), and B (black), where the meaning of “blink” is to alternate
between yellow and black.

• Write a CTL formula that expresses the safety property: the light will never
switch from green to red without first becoming yellow.

• Write a CTL formula that expresses the liveness property: the light will never
stay red for indefinitely long.

2. Draw a computation tree that expresses the semantics of the following CTL for-
mulas:

• AF a

• EG a

• EG a → AF b

• A[aUA[bU c]]

3. Draw Kripke structures that model the four formulas in the previous question.

4. Determine which of the following equivalences are correct.

• AXAFP ↔ AFAXP

• EXEFP ↔ EFEXP

• AGP ↔ AXAGP

• ¬A[P UP] ↔ E[P U¬Q]

5. Provide a Kripke structure which shows that the following CTL formulas are not
equivalent: AFP ∨Q and AFP ∨AFQ.

6. Provide two Kripke structures K0 and K1 where Tr(K0) = Tr(K1), and a CTL
formula P that is true in the initial state of K0 but not in K1. Is your example
significant in terms of modeling correct system behavior, i.e. is your example
merely a theoretical exercise or can you think of a scenario where distinguishing
between such formulas might matter?

References

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of
Model Checking. MIT Press, 2008.

[BS01] Bernhard Beckert and Steffen Schlager. A sequent calculus for first-order dy-
namic logic with trace modalities. In IJCAR, pages 626–641, 2001.

15-414 LECTURE NOTES MATT FREDRIKSON

Temporal Logic L22.9

[CES83] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic veri-
fication of finite state concurrent systems using temporal logic specifications:
A practical approach. In POPL, pages 117–126, 1983.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking:
algorithmic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, 1999.

[Eme90] Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pages 995–1072. MIT Press, 1990.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.
[Pri57] Arthur Prior. Time and Modality. Clarendon Press, 1957.
[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-

current systems in CESAR. In Symposium on Programming, pages 337–351,
1982.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Modeling Computation Over Time
	Paths and Traces

	Computation Tree Logic
	Useful equivalences

