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1 Introduction

Given the importance of SAT and SMT solvers in verification and bug-finding, it is vi-
tally important that their results are trustworthy, and that they are not a potential source
of bugs. One approach to gaining this trust is to verify the solvers themselves, and this
has been done in a few specialized cases [FBL18]. However, this is usually not practical
for several reasons. Solvers tend to be implemented in languages like C or C++, and
are heavily optimized, which makes them difficult to verify. The strategies that state-of-
the-art solvers deploy are constantly changing, and each such update could potentially
invalidate the proofs for previously-verified functionality. The time and labor cost of
verifying each update is simply too great.

An alternative is to have the solver produce a certificate that demonstrates the correct-
ness of its output. On receiving an answer from the solver, a checker can verify that the
solver’s work on a given single input was correct. As long as the certificate satisfies a
few pragmatic concerns, this approach largely addresses the matter of trust cited above,
because it isn’t necessary to conclude that the solver will always produce correct results,
but rather that any input we actually give it yields a correct result.

• The certificate should be efficient to verify: it should not require as much work
to check the solver’s work as it would have to decide the original formula, and
ideally it should require much less.

• The correctness of the verifier is crucial, so the verification procedure should be
simple (ideally, verifiable), and verifier implementations should remain stable
over time.
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• Producing a certificate should not overburden the solver by imposing heavy com-
putation and memory requirements.

• Certificates should be expressive enough to account for new optimization tech-
niques and heuristics that may be implemented in future updates to the solver.

However, when contrasted with the approach of verifying the solver’s implementation
directly, certificates pose one drawback: if the certificate checker claims that the solver
produced an invalid certificate, then the status of the corresponding input remains un-
known.

Finally, it is worth noting that this paradigm of using certificates to establish correct-
ness is not limited to SAT and SMT solvers. It has been applied to a range of numeric
algorithms in the past [BK95], and is currently finding applications in trustworthy arti-
ficial intelligence [WK18].

Learning goals. After this lecture, you will:

• Learn how producing certificates that demonstrate the correctness of a solver’s
result is a practical alternative to verifying the solver itself.

• Understand how the resolution principle from Lecture 13 can be applied to gen-
erate certificates for SAT solvers.

• Understand how different certificate encodings lead to tradeoffs in solver effi-
ciency and verifier complexity, efficiency, and verifiability.

2 Review: Resolution and SAT solvers

For today’s lecture we will mainly return to propositional formulas. Most SAT solvers
accept propositional formulas in conjunctive normal form (CNF). A formula P is in
conjunctive normal form if it is a conjunction of disjunctions of literals, i.e., it has the
form:

(l00 ∨ l01 ∨ · · · ∨ l0n0) ∧ · · · ∧ (lm0 ∨ lm1 ∨ · · · ∨ lmnm)

where lij is the jth literal (i.e., variable or negated variable) in the ith clause of F . Note
that if there are n variables appearing in total in P , then each clause will have at most
n literals because any clause with both p and ¬p can be trivially removed. A clause
may have fewer than n variables, as those that do not appear in a clause are treated as
“don’t care”. For most algorithms, it is convenient to think of a clause as a set of literals
{l1, . . . , ln} where we write ⊥ for the empty set. We will still write this as l1 ∨ . . . ∨ ln.

Resolution is both the name of a rule of inference and an algorithm searching for a
refutation of a theory T . Such a refutation is evidence that the theory is unsatisfiable. The
rule of inference can be written as follows:

p ∨ C ¬p ∨D

C ∨D
resolution
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1 let rec dpll (f: formula) : bool =

2 let fp = bcp f in

3 match fp with

4 | Some True -> true

5 | Some False -> false

6 | None ->

7 begin

8 let p = choose_var f in

9 let ft = (subst_var f p true) in

10 let ff = (subst_var f p false) in

11 dpll ft || dpll ff

12 end

13 end

Figure 1: Basic DPLL algorithm for deciding propositional satisfiability.

The two premises of the rule are clauses (really: sets of literals), even if we write them
using disjunction, so C has no copy of p and D has no copy of ¬p. When it’s convenient,
we will denote the application of resolution to clauses C and D on literal p as C ▷◁p D.

To use this rule to find a refutation, we repeatedly apply it to clauses that are al-
ready in the formula, each time adding a new clause as a consequence of the rule. If we
eventually add the empty clause, we conclude that the original theory was in fact unsat-
isfiable because clauses added via resolution preserve satisfiability, and no assignment
can satisfy the empty clause.

While this approach was used in the past to decide satisfiability, the algorithms that
are based on it are not terribly efficient, and have trouble scaling to the types of for-
mulas that are relevant to many applications today. In the 1960’s, Martin Davis, Hilary
Putnam, George Logemann, and Donald Loveland developed the DPLL algorithm for
deciding satisfiability, as shown in Figure 1

DPLL is a relatively straightforward approach based on recursive case-splitting on
each variable in the formula, with one important exception that is apparent on line 2.
Recall that a clause is unit under a partial assignment to the variables if exactly one lit-
eral in the clause is unassigned. Boolean constraint propagation (BCP), or sometimes unit
propagation for short, takes advantage of the fact that any satisfying assignment to the
formula must satisfy the unassigned literal in a unit clause, and adds these assignments
at each step until no unit clauses remain. In practice, this optimization is very helpful,
and when implemented intelligently leads to solvers that can handle impressively large
formula, despite the inherent complexity of deciding satisfiability.

In the 1990’s, another significant improvement was introduced based on learning
additional conflict clauses during search. Whenever the solver generates a partial as-
signment that conflicts with its clause set (i.e., under which P evaluates to false), a
procedure called conflict-driven clause learning analyzes the trace leading to the conflict,
and derives a new clause that explains the “reason” for the conflict. Adding this clause
to the formula will prevent the solver from exploring assignments that lead to similar
conflicts in the future. The procedure for finding a conflict clause under partial assign-
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ment M , on finding an unsatisfied clause C, is as follows.

1. While C contains implied literals, do:

2. Let l be the most recent implied literal in C

3. Let C ′ be the clause that implied l by unit propagation

4. Update C := C ▷◁l C
′

Because resolution preserves satisfiability, adding the resulting clause to the formula is
safe. While there are other methods for deriving a conflict clause, they are all based on
resolution, so this basic procedure will suffice for our purposes today.

3 Certificates for DPLL

A certificate A for a SAT solver should contain all of the information necessary to deter-
mine that its final result—either a satisfying assignment or an unsat decision—is correct
for the original formula P that it was given. In the first case, the satisfying assignment
itself serves as a viable certificate: it is straightforward to evaluate a set of clauses given
an assignment, and doing so clearly requires less work than finding one. In the second
case, it is not as obvious what the certificate should look like. Naively, one might imag-
ine enumerating each conflicting assignment that the solver encountered. But what
about those that it skipped over because of unit propagation? More importantly, will
checking this really be less work than what the solver has already done?

The resolution inference rule that we studied in Lecture 13 is refutation-complete,
which means that for any unsatisfiable propositional formula, there exists a resolution
refutation for it. This suggests that proofs using only the resolution rule could work
well as certificates for SAT solvers: whenever the verifier needs to check an unsat deci-
sion, it could check that a proof given by the solver only contains correct applications of
resolution, and that all of the clauses in the leaves of the proof appeared in the original
CNF formula.

A few questions remain about the viability of resolution for this purpose. DPLL does
not seem to use resolution during its search, so can we efficiently generate a resolution
proof from the work that it does? If that is the case, then will the proof be small enough
that checking it is still a reasonable amount of work?

3.1 Basic Approach: DPLL Without BCP

To answer the first question, we’ll start by simplifying DPLL by removing the unit
propagation (BCP) step. Looking at Figure 1, this means that the procedure will just
enumerate all possible assignments, and return unsat if it fails to find a satisfying one.
However, because it eagerly evaluates the formula under each extension to an assign-
ment, it might stop early on some recursive calls if it encounters a conflict.

Without BCP, it is not difficult to see that we can extract a resolution proof from the
work that this solver does. Consider a case where the solver has decided all but one
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variable l, so it branches, assigning l and ¬l and encountering conflicts in both cases. Let
C+ be the clause that conflicted with the assignment l, and C− be the one that conflicted
with ¬l. Then Cl = C+ ▷◁l C− is a clause containing literals other than l, which must be
covered by any satisfying assignment if both C+ and C− are to be satisfied as well. This
can be passed along when backtracking, and resolved with a corresponding clause if
the other branch of the decision immediately before l is also unsatisfiable.

To see this in action, consider the formula P :

(¬b ∨ c) ∧ (a ∨ c) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬b) ∧ (b ∨ ¬c) (1)

The search performed by DPLL without unit propagation is shown below, where the
leaves are the clauses from P that conflicted with each partial (or complete) assignment.

¬a

¬b

a ∨ c b ∨ c̄

¬c c

a

ā ∨ b̄ā ∨ b

¬bb

a ∨ b̄

b

Looking at the only branch that occured on c on the bottom-left, observe what we get
from resolving the two conflicting clauses R− = a ∨ c, R+ = b ∨ ¬c:

Rc = a ∨ c ▷◁c b ∨ ¬c = a ∨ b

No satisfying assignment can cover both R+ and R− by its value for c, so it must satisfy
a ∨ b. But for the previous branch, the partial assignment with b conflicted on a ∨ ¬b.
Resolving this with the result passed along for the ¬b branch,

Rb1 = a ∨ b ▷◁b a ∨ ¬b = a

On the other side of the tree, where the assignments have a set, both branches b and ¬b
conflicted as well, yielding,

Rb2 = ¬a ∨ b ▷◁b ¬a ∨ ¬b = ¬a

Then at the topmost branch on the variable a, it is clear that resolving Rb1 and Rb2 will
yield the empty clause ⊥. All of this can be combined to produce a refutation of the
original formula. Below, let C0, C1, . . . , C5 correspond to the clauses as they are shown
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in the example from left to right.

a ∨ c C1

¬a ∨ b C2

¬a ∨ ¬b C3

a ∨ ¬b C4

b ∨ ¬c C5

a ∨ b C6 = C1 ▷◁c C5

a C7 = C6 ▷◁b C4

¬a C8 = C2 ▷◁b C3

⊥ C9 = C7 ▷◁a C8

The approach that we have just outlined is sufficient to produce a correct refuta-
tion for any run of DPLL without unit propagation, with one minor catch. On some
branches, the resolvent passed along from one of the children may not contain an oc-
currence of the variable that was branched on. For example, there are no satisfying
assignments containing ¬a:

(a ∨ ¬b) ∧ (c ∨ d) ∧ (a ∨ c ∨ ¬d) ∧ (¬c ∨ e) ∧ (¬c ∨ ¬e)

The extension ¬a, b conflicts with the clause a ∨ ¬b. The extension ¬a,¬b conflicts with
the remaining four clauses, and their resolvent (given by (C1 ▷◁d C2) ▷◁c (C3 ▷◁e C4))
is the unit clause a, because these four clauses contain no occurrences of the variable b.
It is not possible to resolve ¬a, b and a on b, so the correct thing to do is to pass along
the clause that does not contain the branching variable (in this case, a). The correctness
of this choice is apparent in the current example: the fact that all extensions of ¬a led
to conflicts is reflected by the resolvent a, which “explains” these conflicts by asserting
that any satisfying assignment must have a.

The correctness of this procedure for generating refutations follows from the fact that
each resolvent generated along the way is composed of literals that are negations of
the partial assignment that led to the current conflict. For instance, in the example
from earlier, the resolvent obtained after branching on c, under the partial assignment
[¬a,¬b], was a ∨ b. Carrying this property to the beginning of the procedure’s search,
branching on the first variable l will on one side yield a clause containing ¬l, and on
the other one containing l, which will thus provide a refutation.

This property can be proved by induction on the tree implicit in any DPLL-like
search. The base case arises when the current partial assignment conflicts with some
clause in the formula; it is immediate that the “resolvent” (a leaf in the refutation), given
by the conflicting clause, will only contain negated literals from the partial assignment.
In the inductive case, resolving on the clauses obtained on either branch will yield a
new clause with all literals for the most recently-assigned variable eliminated. The in-
ductive hypothesis establishes that the remaining literals are all negations of those in
the assignment that immediately prefixes the most recent one.
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Step Partial valuation
Start with an empty partial valuation. {}
Decide a. {a 7→ true}

Propagate b from unit clause C2. {a 7→ true, b 7→ true}
Clause C3 is conflicting. Backtrack. {}

Decide ¬a. {a 7→ false}
Propagate c from unit clause C1. {a 7→ false, c 7→ true}
Propagate b from unit clause C5. {a 7→ false, c 7→ true, b 7→ true}
Clause C4 is conflicting. Unsat

Figure 2: DPLL trace of example from Equation 1.

3.2 Now with BCP

Now we will see how to extend this procedure to account for unit propagation. We
begin by listing out a potential trace of DPLL on the same example from earlier in
Figure 2. Because this is a short trace, it is readily apparent that we cannot just ignore
the unit propagation steps and apply the same method from before. If we were to do
that, then we see that there are just two conflicting clauses that arose during the search:
C3 = ¬a ∨ ¬b and C4 = a ∨ ¬b. Resolving these on the only branch taken (a) yields ¬b,
which does not amount to a refutation.

Observe that unit propagation can be viewed as a special case of resolution, where
the “remainder” literals for one of the clauses is empty.

p ∨ C ¬p
C

unit

Each time that DPLL applies unit propagation, it is effectively performing this special
case of resolution by replacing the occurrence of the unit literal in every other clause
with true . When the unit clause is not literally a unit clause, it is still considered as such
under a given partial assignment that replaced all of the other literals with false . So, we
can account for unit propagation in the certificate by passing along the resolvent of the
conflicting clause and the unit clause, on the unit literal.

In the current example, after encountering a conflict on C3 = ¬a ∨ ¬b, the procedure
would generate the following for the branch deciding a:

Cb1 = C3 ▷◁ C2 = ¬a

Likewise, for the branch deciding ¬a, it would first resolve the conflict clause C4 with
the most recent unit clause C5 on its unit literal b, and then resolve with the first unit
clause C1 on its unit literal c:

Cb2 = C4 ▷◁b C5 = a ∨ ¬c
Cc = Cb2 ▷◁c C1 = a

As before, the resulting clauses that are resolved at the top level are ¬a and a, giving a
refutation.
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Step Partial valuation
Start with an empty partial valuation. {}
Decide a. {a 7→ true}

Propagate b from unit clause C2. {a 7→ true, b 7→ true}
Clause C3 is conflicting.
Learn C6 = ¬a. Backtrack. {}

Propagate ¬a from C6. {a 7→ false}
Propagate c from unit clause C1. {a 7→ false, c 7→ true}
Propagate b from unit clause C5. {a 7→ false, c 7→ true, b 7→ true}
Clause C4 is conflicting. Unsat

Figure 3: DPLL with clause learning, example from Equation 1.

This procedure maintains the property discussed earlier, that the resolvent at each
step only contains negations of literals appearing in the current partial assignment.
Observe that when unit propagation occurs, all literals in the unit clause Cu except the
unit literal l must be negated from the current partial assignment. The clause C that is
resolved with the unit clause by this procedure must also contain only negations of the
current assignment: either the partial assignment extended with l directly conflicted
with C, or via the inductive hypothesis. Then as before, resolving on the unit literal
leaves the union of literals in Cu and C (minus l).

3.3 Incorporating Clause Learning

The last point that we’ll cover regarding certificates for SAT is how to incorporate clause
learning into certificate generation. Recall that clauses are learned by the application
of resolution, starting with the formula clause that was found to be conflicting, and
continuing on through resolution with unit clauses in reverse chronological order until
there aren’t any implied literals left. Because this process is already a direct application
of the resolution rule, these steps can be incorporated directly into the certificate: each
time a conflict clause is learned, add the corresponding resolution step to the certificate.

Aside from recording all of the resolution steps used to derive the learned conflict
clauses, the solver must deduce an order to apply resolution to the learned clauses to
produce a refutation. This can be accomplished by a process similar to learning new
conflict clauses, applied to the last conflict that occurred immediately prior to return-
ing unsat. Learned clauses have the property discussed in the previous two sections,
that their literals are negations of the current partial assignment. This means that back-
tracking to the level above the most recently-decided literal will always force a unit
propagation after adding the new clause, and when the solver reaches its final con-
flict prior to returning unsat, there will be no decided literals (i.e., the conflict will have
arisen purely due to unit propagation). This means that applying resolution to unit
clauses in reverse chronological order until only the (empty) set of decided variables
remains will yield the empty clause, thus giving a refutation.
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Let’s see this in action on the same example from the previous two sections. Figure 3
shows a trace of DPLL on the formula from Eq. 1 with clause learning. After deciding
a, the conflict on C3 arises, and resolving C2 and C3 yields the clause C6 = ¬a to add
to the formula. This clause is of course unit, which triggers the chain of propagations
from C1 and C5 leading to the conflict on C4. As this conflict arose when there were the
solver’s assignment was empty, the formula must be unsat. Now observe that chaining
resolution on the clauses involved in the last conflict leads to a refutation:

C4 ▷◁b C5 ▷◁c C1 ▷◁a C6 = a ∨ ¬b ▷◁b b ∨ ¬c ▷◁c a ∨ c ▷◁a ¬a
= a ∨ ¬c ▷◁c a ∨ c ▷◁a ¬a
= a ▷◁a ¬a
= ⊥

The certificate thus needs to (1) show the resolution steps leading to any learned clause
involved in the final conflict, and (2) retrace the final conflict in reverse chronological
order to obtain a refutation.

4 Certificate Encodings

There are two principle formats for encoding resolution proofs that have been adopted
by state-of-the-art SAT solvers. The first, known (perhaps unsurprisingly) as resolution
proofs, more closely resembles the example resolution proofs seen in this lecture and
Lecture 13. The second, clausal proofs, is more concise and is especially common in
solvers that use clause learning, as these certificates can be easily extracted from the
work needed to learn conflict clauses. Each has its advantages and disadvantages, so
the “right” encoding depends on the context in which certificates will be used.

4.1 Resolution Proofs

The most intuitively straightforward way to represent a resolution proof is to begin by
listing all of the relevant clauses from the input formula, followed by each application
of the resolution rule with references to both antecedent clauses. This is essentially
what a resolution proof consists of, but there are a few opportunities to optimize the
encoding for smaller proofs.

First, as became apparent in Section 3.2 and 3.3, resolution steps are often chained
sequentially. Rather than encoding each step of the chain as a distinct step in the cer-
tificate, the entire chain can be represented more compactly as one step in the proof by
listing the ordered sequence of clauses appearing in the chain. In fact, it is not strictly
necessary to insist that the sequence be given in the correct order, as it is not expen-
sive for the certificate checker to deduce the correct ordering, as long as the resolvent is
given in the certificate as well.

Second, as long as the antecedent clauses in chains is given in the correct order, then
resolvent clauses do not need to be given explicitly in the certificate, as the checker can
easily work the resolvent out from its antecedent clauses. Likewise, the variable that
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1 1 1 3 0 0

2 2 -1 2 0 0

3 3 -1 -2 0 0

4 4 1 -2 0 0

5 5 2 -3 0 0

6 6 * 0 2 3 0

7 7 0 4 5 1 6 0

1 -1 0

2 0

Figure 4: Representative encodings of the example proof from Section 3.3. On the left is
a resolution proof in TraceCheck format, and on the right is a clausal proof in
RUP format.

resolution is being applied on, i.e. the p in ▷◁p, does not need to be stated explicitly.
The checker can determine which variables are opposing in a given pair of antecedent
clauses, and if there is more than one such pair, then it assumes that resolution is ap-
plied to all of them. This is not problematic when it comes to expressiveness, because
the ultimate goal is always to derive an empty clause, so steps that remove more than
one variable at a time are economical.

A representative format that uses this encoding is modeled by the TraceCheck tool,
developed as part of the PicoSAT effort [Bie08]. The left trace in Figure 4 is the example
from the previous section in this format. Variables are represented by integers starting
from 1, signed - to denote negation. Each line of this format represents a clause, along
with any antecedents needed to derive it. The first number in each line is an index,
used by later steps to refer to the clause represented by that line. After the index, the
literals in the clause are given, terminated by a 0. Then, the list of antecedents needed
to derive that clause in a resolution chain are listed, and terminated by a 0.

Looking at Figure 4, the first line is indexed 1, and represents the clause 1 3 (i.e. a∨c).
After the first terminating 0, the second one follows with no intervenining indices to
represent resolution antecedents, which means that this line encodes a clause that was
assumed from those given in the original formula. This is also true for indices 2, 3, 4,
and 5. The clause at index 6 has literals given by *, which means that the checker should
compute the resolvent from the list of antecedents that follow the first terminating 0:
2 3. In other words, the clause at 6 is the one learned by the first conflict encountered
in the example from Section 3.3, by resolving C2 and C3 to obtain ¬a. It is not necessary
to have the checker compute the resolvent, and this line could have been given by:

1 6 -1 0 2 3 0

Finally, on the last line the first 0 terminator follows the index number without any
intervening clause literals, which denotes that this step encodes the derivation of the
empty clause. It encodes the chain given in Section 3.3 directly.
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4.2 Clausal Proofs

The second predominant type of encoding takes advantage of the fact that the clauses
learned by solvers via resolution satisfy the reverse unit propagation property.

Definition 1 (Reverse Unit Propagation (RUP) Clause). A clause C is called a reverse
unit propagation clause with respect to CNF formula P if and only if the formula P∧¬C
simplifies to ⊥ via unit propagation.

To understand Definition 1, first note that if C = l1 ∨ l2 ∨ · · · ∨ ln is a clause, then
¬C = ¬l1 ∧ ¬l2 ∧ · · · ∧ ¬ln is a CNF with only unit clauses. In other words, ¬C can
be viewed as an assignment to the variables appearing in C. If P simplifies to ⊥ after
making these assignments and applying BCP, then we say that C is a RUP clause for
P . The claim above is that clauses learned by the procedure described in Section 2
are always RUP clauses. First, note that because a learned clause C is entailed by the
original formula P , P ∧ ¬C is indeed a contradiction. Because C consists of (negations
of) literals that were decided on a trace that ultimately unit-propagated to a conflict,
negating C and conjoining with P amounts to making the same partial assignment, so
BCP should yield the same conflict.

Now recall the example from Section 3.3: it consisted of the derivation of C6 = C2 ▷◁b
C3, and the chain C4 ▷◁b C5 ▷◁c C1 ▷◁a C6 which resulted in the empty clause. Observe
that the certificate checker does not need to be given the resolution steps to derive C6, it
just needs to establish that C6 is a consequence of the original formula P , i.e., to check
that P ∧ ¬C6 ↔ ⊥. The RUP property means that the checker can accomplish this by
applying BCP to P ∧ ¬C6, and checking to ensure that the result is a conflict.

Likewise, notice that the steps listed out in the chain C4 ▷◁b C5 ▷◁c C1 ▷◁a C6 corre-
spond to a sequence of unit propagations stemming from C6. This chain resulted in the
final conflict that the solver encountered before returning unsat, so we may think of it
as a chain that results in the “learned” clause ⊥ (which gives the desired refutation).
Just as before, the checker does not need to be given this chain, and can instead check
that ⊥ is RUP for P ∧ C6 by applying BCP to P ∧ C6 ∧ ¬⊥, or simply P ∧ C6.

This reasoning gives rise to clausal proofs. A clausal proof for a CNF P is simply a
list of clauses [C1, C2, . . . , Cn] where Cn = ⊥, with the following property:

P ∧ C1 ∧ · · · ∧ Ci−1 ∧ ¬Ci unit propagates to ⊥, for all i ∈ {1, . . . , n} (2)

Note that for solvers which implement clause learning, there is no question about how
to generate a clausal proof: just output each learned clause generated by the solver, in
the order that they are learned.

Likewise, verifying a clausal proof is conceptually straightforward, as the checker
relies exclusively on BCP. Most checkers verify the clauses in the reverse order in which
they were learned, i.e. P ∧C1∧· · ·∧¬Cn is checked before P ∧C1∧· · ·∧¬Cn−1, because
there is no point in doing more work if later steps to not give a valid refutation. This
gives rise to the term Reverse Unit Propagation in Definition 1.

Figure 4 on the right shows an representative encoding of a clausal proof in the RUP
format [Gel08]. The format is very simple: each line lists a clause by its literals, termi-
nated by 0. The same signed integer encoding for literals is used as in the TraceCheck
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format discussed earlier. This example certificate is impressively concise: the first line
gives the lemma ¬a, and the second denotes the empty clause ⊥.

4.3 Tradeoffs

The relevant tradeoffs for certificate encodings involve the amount of work done by
the solver versus the checker, storage considerations, and the degree of complexity in-
volved in checking a certificate. Resolution and clausal proofs clearly represent very
different points along these axes.

Resolution proofs are more verbose, and generating them requires more bookkeeping
by the solver. The fact that indices of earlier clauses are needed to correctly format
later proof steps implies a non-trivial lower bound on the amount of memory that the
solver will need to devote to certificate construction, and as the size of the proof grows
the amount of work needed to consult this bookkeeping will grow linearly with it. In
short, resolution proofs are more costly to construct, and depending on the scale of the
formula and its proof, doing so may be prohibitively expensive in some situations. On
the other hand, they are simple to verify, as the checker just needs to determine that the
result of each resolution chain listed in the certificate gives the expected result.

Clausal proofs are extremely simple for most solvers to generate, as emitting learned
clauses requires just a few lines of code and imposes no appreciable time or space over-
head. The story is much different for the checker. The most straightforward approach
for verifying them is quite costly, as the checker needs to validate Equation 2 for each
i ∈ {1, . . . , n}. There are more sophisticated methods and heuristics for checking these
proofs more efficiently, and checkers can potentially re-use highly optimized imple-
mentations of BCP from state-of-the-art solvers. But the cost is still typically greater
than checking resolution proofs, and this additional complexity is not desirable from
a correctness standpoint (nor is using the same code to both produce an answer, and
check that it is correct).

5 SMT Certificates

In Lecture 19, we learned how SMT solvers extend DPLL by incorporating a conjunc-
tive theory solver, in a procedure referred to as DPLL(T ). Recall that at each step, a
propositional abstraction of a theory formula P is checked for satisfiability by DPLL.
If the abstraction is unsatisfiable, then the procedure returns unsat. Otherwise, a satis-
fying assignment is used to construct a query to the theory solver, which could either
yield a satisfying assignment for P , or a new theory lemma to add to the propositional
abstraction.

Summarizing the above, whenever DPLL(T ) returns unsat, any certificate that it pro-
duces will have a portion that is a refutation for the propositional skeleton. However,
this is not sufficient, because the propositional skeleton will have clauses that were not
part of the original formula, and correspond to lemmas provided by the theory solver.
If the theory solver is able to produce certificates for each theory lemma, then these
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1 unit -resolution(

2 Not(a == f(f(a, b), b)),

3 trans*(a == f(a, b),

4 symm(

5 monotonicity(

6 symm(a == f(a, b),

7 f(a, b) == a),

8 f(f(a, b), b) == f(a, b)),

9 f(a, b) == f(f(a, b), b)),

10 a == f(f(a, b), b)),

11 False)

1 f 134 (decl a () S) 0

2 e 5 a 0

3 f 135 (decl b () S) 0

4 e 6 b 0

5 f 133 (decl f (S S) S) 0

6 e 7 f 5 6 0

7 e 8 = 7 5 0

8 b 1 8 0

9 i 1 0

10 1 0

11 e 9 f 7 6 0

12 e 10 = 5 9 0

13 b 2 10 0

14 i -2 0

15 r euf 2 0

16 0

Figure 5: Two proofs produced by Z3 for the EUF formula f(a, b) = a∧f(f(a, b), b) ̸= a.
The left formula is formatted as a proof tree, and the right is a clausal proof.
Note that the formula on the left was simplified slightly for presentation by
removing redundant rewrite and introduction terms, so is slightly different
from the literal output given by Z3.

can be interleaved with the steps of the resolution proof to produce a certificate for the
original theory formula.

Two proof certificates generated by Z3 for the EUF formula f(a, b) = a∧f(f(a, b), b) ̸=
a are shown in Figure 5. The first thing to note is that SMT certificates are at an earlier
stage of development and adoption than those for SAT, so common encodings between
solvers do not exist; in fact, the clausal proof on the right of the figure is the output of
an experimental feature in Z3, and it currently cannot produce clausal proofs for most
theories.

The certificate on the left likely comports with the idea of a first-order theory proof
that comes to mind for many of us. It maintains a tree-like structure, where each node
is either a formula (typically coming from an assumption given by the original theory
formula), or is labeled with a proof rule: unit-resolution, trans* (transitivity), symm
(symmetry), and monotonicity (congruence). Notice that the topmost reasoning is res-
olution, its first antecedent is one of the two clauses in the original formula, and its
second antecedent derives from an application of transitivity from EUF, which relates
a = f(a, b) to a = f(f(a, b), b). This portion was generated by the theory solver, and
captures the reasoning needed to conclude that the negation of the second literal is a
consequence of the first.

The certificate on the right is a trace of the same solver run given as a clausal proof.
As before, the 0 digits at the end of each line are terminators. The lines starting with
f relate the definition of “auxiliary” functions and constants a, b, and f . Those starting
with e define terms and theory literals, so e 5 a 0 on line 2 defines an expression with
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index 5 to correspond to the EUF term a; on line 7, e 8 = 7 5 0 defines index 8 to
be the application of the predicate = to indices 7 (f(a, b)) and 5 (a). Lines beginning
with b define the propositional abstraction, so b 1 8 0 defines a propositional literal
indexed by 1 to be mapped to the theory literal 8 (f(a, b) = a). Lines beginning with i

give input assertions, so i 1 0 relates that propositional variable 1, which is the theory
literal f(a, b) = a, is given as an assumption. Finally, lines starting with r denote theory
lemmas: r euf 2 0 says that literal 2 (f(f(a, b), b) = a) is a consequence of the theory
axioms and asserted theory literals.

The clausal proof ends with a line consisting only of 0 to denote a refutation. It is
the checker’s job to work out that the theory lemma can be resolved with the line pre-
ceeding it to derive the empty clause. Likewise, whereas the tree-like proof on the left
provided detailed steps to establish the antecedents of the topmost resolution step, the
clausal proof leaves it to the checker to work out that f(f(a, b), b) = a is a consequence
of the asserted f(a, b) = a. However, whereas lemmas learned by SAT solvers uni-
formly satisfy the RUP property, there is no such unified approach to take with theory
lemmas, and in general the checker may need to retrace many of the same steps taken
by the SMT solver, and implement much of the same functionality. A survey article by
Barrett et al. [BDMF15] provides a good overview of these and other challenges that
arise in practice when generating SMT certificates.

6 Limitations

Finally, returning to the desiderata listed at the beginning of these notes, an important
quality for proof certificates to have is conciseness. If a proof of unsatisfiability takes
as long (or longer) for the checker to process, or require gigabytes of storage, then their
practical utility may be limited in some cases.

Some formulas do not have polynomial-sized resolution proofs. One such famous ex-
ample are the so-called “pigeon-hole” formulas that you encountered on Assignment
5: whenever the number n of pigeons in such a formula is greater than the number of
holes, then any refutation based on resolution will require an exponential number of
steps in n [Hak85]. While problems like this may not arise frequently in most practical
applications of SAT or SMT, it is important to keep in mind that there is not a polyno-
mial bound on the size of the certificate that applies to general CNF formulas.

Another source of difficulty stems from the fact that the actions of the solver must
be efficiently simulated via resolution in order to produce a concise certificate. Some
solvers employ strategies that add clauses to a formula either as a preprocessing step,
or during search (“inprocessing”). It must be possible to show that these clauses are
entailed by the original formula with a short resolution proof, or the resulting certificate
cannot be checked. Some forms of clause addition cannot be simulated with resolution,
so to address this solvers may need to turn to richer proof systems than resolution
for producing refutation certificates. The survey article by Huele and Biere [HB15]
provides a good overview of these techniques.
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