15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Convergence

Matt Fredrikson®

Carnegie Mellon University
Lecture 11
Thursday, February 23, 2023

1 Introduction

We began the lecture with a consideration of induction over explicitly defined inductive
types, notably unary natural numbers defined by zero and a successor function. We
tacked this material on the end of the notes for Lecture 9.

So far in our study of dynamic logic we have focused on [a| P, meaning that P is true
after every possible run of a. In the world of deterministic programs we call this partial
correctness: the final state satisfies P, but only if a terminates. We also sometimes talk
about a safety property: no matter what happens, if we terminate at least P will be true.

The other modality is (o) P which means that there is a run of « such that P is true.
For deterministic programs (that is, programs that have at most one final state), we call
this total correctness: o will reach a final state, and it satisfies P. We also sometimes
talk about a liveness property: something good (that is a final state that satisfied P) will
eventually happen.

In this lecture we recall the semantics of () P more formally and then examine how
to break down programs for this particular modal operator by using axioms. This will
be straightforward until we encounter a*, which requires an axiom of convergence as a
counterpart to the axiom of induction.

Learning goals. After this lecture, you should be able to:

* Express liveness properties in dynamic logic

“Closely adapted from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414
http://www.cs.cmu.edu/~15414/lectures/09-induction.pdf

L11.2 Convergence

¢ Reason with the axiom of convergence

* Reason with interacting [—| and (—) modalities.

2 Box vs. Diamond

Recall that we defined

w = [a]@ iff for every v, w[a]v implies v |= P
w = ()@ iff there exists a v such that w]a]Jv and v = P

Both of these are with respect to the same semantics w[a]v. In the first case, if v is
reachable then P must be true; in the second case some such v must be reachable.

Recall the definitions
Ttrue

7false

skip

2
abort £

From this definition we can deduce the following properties. You should make sure
you understand each line.

[skip] P iff P
(skip)P iff P
[abort] P always

abort) P never

*ltrue always
*)true always

(
[
(a
[a*]false never
(a*)false never

3 One Axiom for Diamonds

It turns out that in dynamic logic we can give a single axiom characterizing («)Q:
(@)@ < —[a]-Q
Let’s reason this through, starting on the right-hand side:

wkE a]-Q iff ~(Vr.wa]y = v E Q)
iff . (wla]y — v E Q)
iff I.wlavA-(vE-Q)
iff wlavArvEQ
iff wkE ()@
Here we have used some fundamental laws of (classical) reasoning in our language of
mathematical discourse, such as —(P — Q) + (P A —Q) and —(3z. Q) + Vz. -Q.
This observation will carry us quite far, but it will not help us when we come to
induction.

15-414 LECTURE NOTES MATT FREDRIKSON'

Convergence L11.3

4 Other Axioms for Diamonds

We would like to break down the programs in («)(@ in order to generate a verification
condition in pure arithmetic. In some cases this works just as for [@](), in other cases it
is very different.

We start with assignment. This will always terminate in one step, so a property of all
runs is the same as a property of one run.

(r+e)Q(z) < Va'a' =e— Q(2') (2 notine, Q(x))

Sequential composition also does not change matters in any essential way. Just for a
change of style, let’s use the axiom from the previous section to derivation what should

hold.
(a;B)Q iff —[a; f]-Q
iff [H]-Q
iff ()= [5]-Q
iff (a)(8)~=Q
iff () (6)Q

Informally, we can argue as follows: there is a run of « ; § if there is a run of a to some
intermediate state, and a run of 8 from there after which () is true. And that’s the same
as running « to a state from which g can reach a state in which @ is true.
For nondeterministic choice o U 3, we can reach a final state either by choosing o or
choosing 5.
(aUp)Q iff —[aUf]-Q

iff —([a]=-Q A [B]-Q)

iff (=[a]-Q) Vv (=[]-Q)

iff ()QV (B)Q

We see that through the negations this dualizes the axiom for [« U 5], used in the second
step above.
Finally, for guards they are opposites in a different say.

(?2PYQ iff —[?P]-Q
iff —(P — Q)
iff PAQ

Finally, we come to repetition. There is a simple analogue of the axiom to unroll a loop,
for the same reason as nondeterministic choice. We won’t go through steps, just show
the final equivalence.

(@)@ < QV{a){a"HQ

As before, this finite unrolling is of limited utility.

15-414 LECTURE NOTES MATT FREDRIKSON?

L11.4 Convergence

5 Convergence

In practice, unrolling a loop a finite number of times is insufficient to prove most pro-
grams. Instead, we work with the induction axiom and then invariants when proving

[a*]@. Recall:

[@*]Q < QA[a*(Q — [a]Q) (induction)
— JAOWJ = [o)AOJ — Q)

What is the analogue for induction for (a*)@Q? We can work through it and see what
the mechanical approach yields.

(a*)Q iff —[a*]-Q
iff (ﬁQ [*](=Q — [o]=Q))
iff QV-la](-Q — [o]-Q)
iff QV (") (~(=Q — [a]-Q))
iff (@) (=Q N () Q)

Unfortunately, the resulting axiom (while true) is not very useful.
(@@ < @V () (-Q A (0)Q)

It states that there is a way to reach a poststate where () is true either if it already
happens to be true in the current state (and we go around the loop zero times), or there
is a way to go around the loop some number of times in such a way that, after that,
is false but we can restore it with one more iteration.

Instead, we have to somehow capture, in a slightly more abstract way, the reasoning
behind the variant contracts in Why3 that guarantee termination.

To capture this logically we assume that a predicate V' is parameterized by an integer
variable n, written as V' (n). We prohibit the variable n from appearing in programs;
instead we use V to relate n to expressions occurring in the program. The axiom of
convergence then says

It is possible to reach a poststate with V/(0) after a finite number of iterations of «
if (1) initially V'(n) for some n > 0,
and (2) at each iteration, assuming V' (n) for n > 0

implies we can reach a poststate with V(n — 1).

Translating this an axiom gives us

(V) « (In.n>0AV(n))
Alle*](Yn.n > 0AV(n) = (a)V(n — 1))
(nnotin «)

It is interesting that this axiom incorporates [a*]| P because we need to make sure that
no matter how many iterations we need until we reach 0 the decrease of n will always
take place.

15-414 LECTURE NOTES MATT FREDRIKSON?

Convergence L11.5

To make this effective we take one more step: we think of V'(n) as the predicate variant
of the iteration and use it to prove an arbitrary postcondition (). As before, this replaces
[a*] P by 0P, and makes sure the variant predicate implies the postcondition. This is
slightly different than the variant expression we use in Why3, which we address in the
next section.

(@*)Q <+ (In.n>0AV(n))
AOWn.n>0AV(n) = (a)V(n—1))
ATV (0) = Q)
(nnotin a or Q)

As an example, let’s prove
r>0—={((z+2x—-1)")z=0

In order to apply convergence we have to define the variant formula V' (n). In this case,
it is easy and we choose

V(n) = (z =n)
that is, n just tracks the value of . We proceed:
To prove (init): 2 > 0 = 3In.n > 0Nz =n True (pick n = z)
To prove (step): z > 0 - O(Vn.n > 0Nz =n— (o —L)x =n—1)
True if Vn.n>0Az=n—Vo'o'=2—-1—=2"=n-1
True if Vn.n>0Az=n—x—1=n-1 By arithmetic

To prove (post): © > 0 — O(z =0 — 2 = 0)
True if r=0—=2=0

To illustrate how we have to think about picking V'(n), consider the slightly more
complicated example

r>0—=>((z+2—-2)")(z=0ver=1)

Consider what variant formula V' (n) might allow us to do this proof.

15-414 LECTURE NOTES MATT FREDRIKSON*

L11.6 Convergence

Wepick V(n)=(x=2nVaz=2n+1). ThenV(0) = (z=0Vez=1)and V(n —1) =
(rx=2n—-2Vz =2n—1). We reason:

To prove (init): « >0 — 3In.n > 0N (x =2nV e =2n+1)
True (every number is either even or odd)

To prove (step): « >0 - O(Vn.n >0A (z =2nVa =2n+1)
—(rx—-2)(x=2n—-2Vzr=2n-1))
True if Vn.n>0A(x=2nVez=2n+1—-2—-2=2n—-2Vaer—2=2n—1)
By arithmetic

To prove (post): c >0 =+ Oz =0Ve=1—=2=0Vz=1)
True if r=0Ver=1—=2x=0ver=1 Valid

6 Interactions Between Box and Diamond

Already, the axiom of convergence mixes [o] P and (a)P. This interaction is a bit tricky,
so we consider a few simpler cases on how these modalities interact.

[0](P = Q) = ([a]P — []Q) Valid

If P implies () in every poststate of o, then if P is also true in every poststate, so must
Q be.

(@)(P = Q) = ({a)P = ()Q) Not valid

There is a poststate in which P implies () and also a poststate in which P is true. Since
these two poststate may be different, we cannot be certain that there will be a poststate
in which Q@ is true.

[a](P = Q) — ()P — (a)Q) Valid

If P implies () in every poststate of a, then this will also be true in the poststate in which
P is true. Therefore, Q will be true in that poststate.
In the next two we explore the consequence of an invariant J

[]7 = (()(J = Q) = (a)Q) Valid

If J is true in every poststate of o, and there is a poststate where J implies @, then @
must be true in that poststate.

[a]J = ((a)Q = () (JAQ)) Valid

If J is true in every poststate of .J, and there is a poststate where @ is true, then both J
and @ must be true in that poststate.

15-414 LECTURE NOTES MATT FREDRIKSON?

Convergence L11.7

7 From Variant Formulas to Variant Expressions

We generalize the axiom of convergence with variant predicates to one with variant ex-
pressions allowing “big steps” where the expressions may decrease by more than 1. In
this formulation we explicitly highlight an invariant J together with the variant ex-
pression e. Both of these may mention program variables but not the new variable n
which tracks the value of the variant in the axiom. This closely approximates what the
verification condition generator for Why3 does for while-loops.

One of the key ideas here is that the invariant may help us to establish the variant. In
lecture we stated:

@)@ « J
ANOJ —e>0)
AOMn. JAhe=n— (a)(J Ne<n))
ANOWJ — Q)
(nnotin J, e, or Q)

While this is true, this is not very useful:® if we know J and 0(J — Q) then we can
conclude (a*)@Q immediately with zero iterations.
So we skip to the version for while loops, recalling that

while Pa = (7P ; a)* ; =P
We can then justify the following axiom (which don’t formally prove sound):

(whilePa)@Q <+ J
ANOWJ AP —e>0)
ANONMn.JAPANe=n— (a)(JANe<n))
AO(JA=P — Q)
(nnotina, J, P, e, or Q)

As an example you may consider the following correctness statement for computing
Fibonacci numbers, using simultaneous assignment as a shorthand.

x>0—=(a«0;b+1;i<0;while(i<z)(a,b<ba+b;i<i+1))a=fibx
To conduct this proof we pick

e = (x—1) variant expression
J = (0<i<zAa=fib(i) ANb=fib(i +1)) invariant

It is then a mechanical exercise to verify the conditions of the axioms for while with
invariants and variant expressions.

®as was pointed out by a student after lecture

15-414 LECTURE NOTES MATT FREDRIKSON?

	Introduction
	Box vs. Diamond
	One Axiom for Diamonds
	Other Axioms for Diamonds
	Convergence
	Interactions Between Box and Diamond
	From Variant Formulas to Variant Expressions

