
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Convergence

Matt Fredrikson*

Carnegie Mellon University
Lecture 11

Thursday, February 23, 2023

1 Introduction

We began the lecture with a consideration of induction over explicitly defined inductive
types, notably unary natural numbers defined by zero and a successor function. We
tacked this material on the end of the notes for Lecture 9.

So far in our study of dynamic logic we have focused on [α]P , meaning that P is true
after every possible run of α. In the world of deterministic programs we call this partial
correctness: the final state satisfies P , but only if α terminates. We also sometimes talk
about a safety property: no matter what happens, if we terminate at least P will be true.

The other modality is ⟨α⟩P which means that there is a run of α such that P is true.
For deterministic programs (that is, programs that have at most one final state), we call
this total correctness: α will reach a final state, and it satisfies P . We also sometimes
talk about a liveness property: something good (that is a final state that satisfied P) will
eventually happen.

In this lecture we recall the semantics of ⟨α⟩P more formally and then examine how
to break down programs for this particular modal operator by using axioms. This will
be straightforward until we encounter α∗, which requires an axiom of convergence as a
counterpart to the axiom of induction.

Learning goals. After this lecture, you should be able to:

• Express liveness properties in dynamic logic

*Closely adapted from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414
http://www.cs.cmu.edu/~15414/lectures/09-induction.pdf

L11.2 Convergence

• Reason with the axiom of convergence

• Reason with interacting [−] and ⟨−⟩modalities.

2 Box vs. Diamond

Recall that we defined

ω |= [α]Q iff for every ν, ωJαKν implies ν |= P
ω |= ⟨α⟩Q iff there exists a ν such that ωJαKν and ν |= P

Both of these are with respect to the same semantics ωJαKν. In the first case, if ν is
reachable then P must be true; in the second case some such ν must be reachable.

Recall the definitions
skip ≜ ?true

abort ≜ ?false

From this definition we can deduce the following properties. You should make sure
you understand each line.

[skip]P iff P
⟨skip⟩P iff P

[abort]P always
⟨abort⟩P never

[α∗]true always
⟨α∗⟩true always

[α∗]false never
⟨α∗⟩false never

3 One Axiom for Diamonds

It turns out that in dynamic logic we can give a single axiom characterizing ⟨α⟩Q:

⟨α⟩Q↔ ¬[α]¬Q

Let’s reason this through, starting on the right-hand side:

ω |= ¬[α]¬Q iff ¬(∀ν. ωJαKν → ν |= ¬Q)
iff ∃ν.¬(ωJαKν → ν |= ¬Q)
iff ∃ν. ωJαKν ∧ ¬(ν |= ¬Q)
iff ∃ν. ωJαKν ∧ ν |= Q
iff ω |= ⟨α⟩Q

Here we have used some fundamental laws of (classical) reasoning in our language of
mathematical discourse, such as ¬(P → Q)↔ (P ∧ ¬Q) and ¬(∃x.Q)↔ ∀x.¬Q.

This observation will carry us quite far, but it will not help us when we come to
induction.

15-414 LECTURE NOTES MATT FREDRIKSON1

Convergence L11.3

4 Other Axioms for Diamonds

We would like to break down the programs in ⟨α⟩Q in order to generate a verification
condition in pure arithmetic. In some cases this works just as for [α]Q, in other cases it
is very different.

We start with assignment. This will always terminate in one step, so a property of all
runs is the same as a property of one run.

⟨x← e⟩Q(x)↔ ∀x′.x′ = e→ Q(x′) (x′ not in e, Q(x))

Sequential composition also does not change matters in any essential way. Just for a
change of style, let’s use the axiom from the previous section to derivation what should
hold.

⟨α ; β⟩Q iff ¬[α ; β]¬Q
iff ¬[α][β]¬Q
iff ⟨α⟩¬[β]¬Q
iff ⟨α⟩⟨β⟩¬¬Q
iff ⟨α⟩⟨β⟩Q

Informally, we can argue as follows: there is a run of α ; β if there is a run of α to some
intermediate state, and a run of β from there after which Q is true. And that’s the same
as running α to a state from which β can reach a state in which Q is true.

For nondeterministic choice α ∪ β, we can reach a final state either by choosing α or
choosing β.

⟨α ∪ β⟩Q iff ¬[α ∪ β]¬Q
iff ¬([α]¬Q ∧ [β]¬Q)
iff (¬[α]¬Q) ∨ (¬[β]¬Q)
iff ⟨α⟩Q ∨ ⟨β⟩Q

We see that through the negations this dualizes the axiom for [α∪β], used in the second
step above.

Finally, for guards they are opposites in a different say.

⟨?P ⟩Q iff ¬[?P]¬Q
iff ¬(P → ¬Q)
iff P ∧Q

Finally, we come to repetition. There is a simple analogue of the axiom to unroll a loop,
for the same reason as nondeterministic choice. We won’t go through steps, just show
the final equivalence.

⟨α∗⟩Q ↔ Q ∨ ⟨α⟩⟨α∗⟩Q

As before, this finite unrolling is of limited utility.

15-414 LECTURE NOTES MATT FREDRIKSON2

L11.4 Convergence

5 Convergence

In practice, unrolling a loop a finite number of times is insufficient to prove most pro-
grams. Instead, we work with the induction axiom and then invariants when proving
[α∗]Q. Recall:

[α∗]Q ↔ Q ∧ [α∗](Q→ [α]Q) (induction)
← J ∧□(J → [α]J) ∧□(J → Q)

What is the analogue for induction for ⟨α∗⟩Q? We can work through it and see what
the mechanical approach yields.

⟨α∗⟩Q iff ¬[α∗]¬Q
iff ¬(¬Q ∧ [α∗](¬Q→ [α]¬Q))
iff Q ∨ ¬[α∗](¬Q→ [α]¬Q)
iff Q ∨ ⟨α∗⟩(¬(¬Q→ [α]¬Q))
iff Q ∨ ⟨α∗⟩(¬Q ∧ ⟨α⟩Q)

Unfortunately, the resulting axiom (while true) is not very useful.

⟨α∗⟩Q↔ Q ∨ ⟨α∗⟩(¬Q ∧ ⟨α⟩Q)

It states that there is a way to reach a poststate where Q is true either if it already
happens to be true in the current state (and we go around the loop zero times), or there
is a way to go around the loop some number of times in such a way that, after that, Q
is false but we can restore it with one more iteration.

Instead, we have to somehow capture, in a slightly more abstract way, the reasoning
behind the variant contracts in Why3 that guarantee termination.

To capture this logically we assume that a predicate V is parameterized by an integer
variable n, written as V (n). We prohibit the variable n from appearing in programs;
instead we use V to relate n to expressions occurring in the program. The axiom of
convergence then says

It is possible to reach a poststate with V (0) after a finite number of iterations of α
if (1) initially V (n) for some n ≥ 0,
and (2) at each iteration, assuming V (n) for n > 0

implies we can reach a poststate with V (n− 1).

Translating this an axiom gives us

⟨α∗⟩V (0) ← (∃n. n ≥ 0 ∧ V (n))
∧ [α∗](∀n. n > 0 ∧ V (n)→ ⟨α⟩V (n− 1))
(n not in α)

It is interesting that this axiom incorporates [α∗]P because we need to make sure that
no matter how many iterations we need until we reach 0 the decrease of n will always
take place.

15-414 LECTURE NOTES MATT FREDRIKSON3

Convergence L11.5

To make this effective we take one more step: we think of V (n) as the predicate variant
of the iteration and use it to prove an arbitrary postcondition Q. As before, this replaces
[α∗]P by □P , and makes sure the variant predicate implies the postcondition. This is
slightly different than the variant expression we use in Why3, which we address in the
next section.

⟨α∗⟩Q ← (∃n. n ≥ 0 ∧ V (n))
∧□(∀n. n > 0 ∧ V (n)→ ⟨α⟩V (n− 1))
∧□(V (0)→ Q)
(n not in α or Q)

As an example, let’s prove

x ≥ 0→ ⟨(x← x− 1)∗⟩x = 0

In order to apply convergence we have to define the variant formula V (n). In this case,
it is easy and we choose

V (n) = (x = n)

that is, n just tracks the value of x. We proceed:

To prove (init): x ≥ 0→ ∃n. n ≥ 0 ∧ x = n True (pick n = x)

To prove (step): x ≥ 0→ □(∀n. n > 0 ∧ x = n→ ⟨x← x− 1⟩x = n− 1)
True if ∀n. n > 0 ∧ x = n→ ∀x′. x′ = x− 1→ x′ = n− 1
True if ∀n. n > 0 ∧ x = n→ x− 1 = n− 1 By arithmetic

To prove (post): x ≥ 0→ □(x = 0→ x = 0)
True if x = 0→ x = 0

To illustrate how we have to think about picking V (n), consider the slightly more
complicated example

x ≥ 0→ ⟨(x← x− 2)∗⟩(x = 0 ∨ x = 1)

Consider what variant formula V (n) might allow us to do this proof.

15-414 LECTURE NOTES MATT FREDRIKSON4

L11.6 Convergence

We pick V (n) = (x = 2n ∨ x = 2n+ 1). Then V (0) = (x = 0 ∨ x = 1) and V (n− 1) =
(x = 2n− 2 ∨ x = 2n− 1). We reason:

To prove (init): x ≥ 0→ ∃n. n ≥ 0 ∧ (x = 2n ∨ x = 2n+ 1)
True (every number is either even or odd)

To prove (step): x ≥ 0→ □(∀n. n > 0 ∧ (x = 2n ∨ x = 2n+ 1)
→ ⟨x← x− 2⟩(x = 2n− 2 ∨ x = 2n− 1))

True if ∀n. n > 0 ∧ (x = 2n ∨ x = 2n+ 1→ x− 2 = 2n− 2 ∨ x− 2 = 2n− 1)
By arithmetic

To prove (post): x ≥ 0→ □(x = 0 ∨ x = 1→ x = 0 ∨ x = 1)
True if x = 0 ∨ x = 1→ x = 0 ∨ x = 1 Valid

6 Interactions Between Box and Diamond

Already, the axiom of convergence mixes [α]P and ⟨α⟩P . This interaction is a bit tricky,
so we consider a few simpler cases on how these modalities interact.

[α](P → Q)→ ([α]P → [α]Q) Valid

If P implies Q in every poststate of α, then if P is also true in every poststate, so must
Q be.

⟨α⟩(P → Q)→ (⟨α⟩P → ⟨α⟩Q) Not valid

There is a poststate in which P implies Q and also a poststate in which P is true. Since
these two poststate may be different, we cannot be certain that there will be a poststate
in which Q is true.

[α](P → Q)→ (⟨α⟩P → ⟨α⟩Q) Valid

If P implies Q in every poststate of α, then this will also be true in the poststate in which
P is true. Therefore, Q will be true in that poststate.

In the next two we explore the consequence of an invariant J

[α]J → (⟨α⟩(J → Q)→ ⟨α⟩Q) Valid

If J is true in every poststate of α, and there is a poststate where J implies Q, then Q
must be true in that poststate.

[α]J → (⟨α⟩Q→ ⟨α⟩(J ∧Q)) Valid

If J is true in every poststate of J , and there is a poststate where Q is true, then both J
and Q must be true in that poststate.

15-414 LECTURE NOTES MATT FREDRIKSON5

Convergence L11.7

7 From Variant Formulas to Variant Expressions

We generalize the axiom of convergence with variant predicates to one with variant ex-
pressions allowing “big steps” where the expressions may decrease by more than 1. In
this formulation we explicitly highlight an invariant J together with the variant ex-
pression e. Both of these may mention program variables but not the new variable n
which tracks the value of the variant in the axiom. This closely approximates what the
verification condition generator for Why3 does for while-loops.

One of the key ideas here is that the invariant may help us to establish the variant. In
lecture we stated:

⟨α∗⟩Q ← J
∧□(J → e ≥ 0)
∧□(∀n. J ∧ e = n→ ⟨α⟩(J ∧ e < n))
∧□(J → Q)
(n not in J , e, or Q)

While this is true, this is not very useful:6 if we know J and □(J → Q) then we can
conclude ⟨α∗⟩Q immediately with zero iterations.

So we skip to the version for while loops, recalling that

whileP α ≜ (?P ; α)∗ ; ?¬P

We can then justify the following axiom (which don’t formally prove sound):

⟨whileP α⟩Q ← J
∧□(J ∧ P → e ≥ 0)
∧□(∀n. J ∧ P ∧ e = n→ ⟨α⟩(J ∧ e < n))
∧□(J ∧ ¬P → Q)
(n not in α, J , P , e, or Q)

As an example you may consider the following correctness statement for computing
Fibonacci numbers, using simultaneous assignment as a shorthand.

x ≥ 0→ ⟨a← 0 ; b← 1 ; i← 0 ; while (i < x) (a, b← b, a+ b ; i← i+ 1)⟩ a = fibx

To conduct this proof we pick

e = (x− i) variant expression
J = (0 ≤ i ≤ x ∧ a = fib(i) ∧ b = fib(i+ 1)) invariant

It is then a mechanical exercise to verify the conditions of the axioms for while with
invariants and variant expressions.

6as was pointed out by a student after lecture

15-414 LECTURE NOTES MATT FREDRIKSON7

	Introduction
	Box vs. Diamond
	One Axiom for Diamonds
	Other Axioms for Diamonds
	Convergence
	Interactions Between Box and Diamond
	From Variant Formulas to Variant Expressions

