
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Dynamic Logic & Compositional

Reasoning

Matt Fredrikson*

Carnegie Mellon University
Lecture 7, 8

February 7, 2023

1 Introduction

We continue on our path towards formalization of various necessary components for
program reasoning: a language of arithmetic expressions e, a language of formulas P ,
and a language is simple while programs α. We gave a mathematical semantics of
each relative to an assignment ω of integers to variables. The meaning of an expression
ωJeK ∈ Z is an integer, a formula can be true ω |= P (or false ω ̸|= P), and the meaning of
a program is a relation ωJαKν between prestates ω and poststates ν. At this point we can
reason about programs semantically, that is, mathematically reason about the meaning
of programs.

None of this gives us a logic for reasoning about programs: all reasoning is reduced
back to general mathematics. It is therefore difficult to mechanize and automate since
general mathematics is difficult to mechanize and automate.

The goal of today’s lecture is to develop a logic for reasoning about programs called
dynamic logic. In this lecture we take yet again a semantic approach, that is, we specify
when a formula that expresses properties of programs is true. But we also write axioms
to capture in syntax how we can reason in dynamic logic.

Learning goals. After this lecture, you should be able to:

• Interpret the meaning of formulas in dynamic logic (DL)

*Closely adapted from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414

L7, 8.2 Dynamic Logic & Compositional Reasoning

• Determine if simple formulas are valid

• Validate DL axioms against the semantics of DL programs

• Design semantics and axioms for simple language extensions

2 The Key Idea: Boxes and Diamonds

Now we proceed to developing dynamic logic (DL), a logic to reason about programs in
our little while-loop language. The key idea of dynamic logic is to add two new kinds
of formulas.

Formulas P,Q ::= . . . | [α]P | ⟨α⟩P

It is surprisingly easy to define the meaning of these new formulas. [α]P means that
in every poststate reachable by α, the formula P is true. And ⟨α⟩P means that in some
poststate reachable by α, the formula P is true.

For those familiar with modal logic: this harkens back to the meaning of □P (P is true
in every reachable world) and ♢P (P is true in some reachable world). The difference
here is that the reachable worlds are concretely determined by programs α and not just
by a fixed reachability relation. Because of this strong analogy, we may pronounce [α]P
as “box α P” and ⟨α⟩P as “diamond α P”.

We define the meaning of the new constructs rigorously as a relation:

ω |= [α]P iff for every ν, ωJαKν implies ν |= P

ω |= ⟨α⟩P iff there exists a ν such that ωJαKν and ν |= P

Let’s discover whether certain simple formulas are true or not. We may want to recall
the definition of the meaning of programs JαK in order to apply it to the following
questions.

ω |= [while trueα]P
ω |= ⟨while trueα⟩P
ω |= [?true]P
ω |= ⟨?true⟩P
ω |= [α]false
ω |= ⟨α⟩false

We suggest you try before moving on to the next page.

15-414 LECTURE NOTES MATT FREDRIKSON1

Dynamic Logic & Compositional Reasoning L7, 8.3

ω |= [while trueα]P always
ω |= ⟨while trueα⟩P never
ω |= [?true]P iff ω |= P
ω |= ⟨?true⟩P iff ω |= P
ω |= [α]false iff α does not terminate (has no poststate)
ω |= ⟨α⟩false never

Even though truth depends on a state ω, there are many formulas whose truth does not
depend on ω at all. In the example, the truth of the first, second, and last are indepen-
dent of the ω. Formulas that are true in any state are called valid. In the examples above,
only the first one is valid. We write

|= P

to express that P is valid. Here are some other examples:

ω[x 7→ 3] |= [x← x+ 1](x = 4) true
|= [x← 4](x = 4) valid
|= x = 3→ [x← x+ 1](x = 4) valid

3 Determinism

We call a program deterministic if in any prestate it has at most one poststate. We call
a language deterministic if every program in it is deterministic. The DL programming
language we have shown so far is deterministic in this sense. One could prove this
rigorously by induction over the structure of the program.

Expressed more mathematically, we say α is deterministic if for every ω, ωJαKν and
ωJαKν ′ imply ν = ν ′. A language is deterministic if every program in the language is
deterministic.

Deterministic languages satisfy certain properties that are not true for languages in
general. Here is one:

For a deterministic language, |= ⟨α⟩P → [α]P for any program α and formula P .

We have used here the notation |= Q (omitting the state ω) to express that Q is valid.
This property can easily be proved by appeal to the meaning of formulas and the defi-
nition of determinism.

In a deterministic language we say that ⟨α⟩P establishes total correctness (the program
α has to satisfy terminate and satisfy the postcondition P), while [α]P establishes partial
correctness (if α has to satisfy P , but only if it terminates).

In Why3, we can establish total correctness by specifying variant contracts that ensure
termination and partial correctness by using the diverges contracts to allow nontermina-
tion.

In a deterministic language, to establish total correctness ⟨α⟩P we can first prove
partial correctness [α]P and then separately prove termination.

In the remainder of today’s lecture we focus on partial correctness and therefore the
[α]P modality.

15-414 LECTURE NOTES MATT FREDRIKSON2

L7, 8.4 Dynamic Logic & Compositional Reasoning

4 Axioms

Now that we have a logic with a suitable semantics our next task is to develop some
tools for reasoning within the logic. Let’s think back to how we reasoned about regular
expressions in the previous lecture. For each form of regular expression we wrote down
an axiom specifying its meaning in a way the theorem provers could use. A critical idea
in that case study was to make sure we break down the question if w ∈ L(r) to some
w′ ∈ L(r′) where r′ is a subexpression of r. This allows the theorem prover to break
down questions about complicated regular expressions into simpler ones.

We’ll follow the same strategy here: write down axioms for [α]P that help us break
down the structure of the program α by logical reasoning without explicitly appealing
to the semantics any more. Of course, the axioms themselves must be justified in terms
of the underlying semantics: we don’t want to conclude something that is not true!

Because they are axioms we need them to be valid, not just true in some particular
state or even classes of states. We now go through the language constructs one by one,
devising axioms.

4.1 Sequential Composition

Which axiom might describe [α ; β]P in terms of [α] and [β] ? Recall the meaning:

ωJα ; βKν iff there exists µ such that ωJαKµ and µJαKν

Intuitively, P is true after α and β if [β]P is true after α. So we propose the axiom

[α ; β]P ↔ [α]([β]P)

In order to prove that this axiom is valid we can decompose it into two implications.
We prove the first one of these.

We want to show that ω |= [α ; β]P → [α]([β]P)
Assume ω |= [α ; β]P (1)
and show ω |= [α]([β]P)
By definition, this holds if for every µ, ωJαKµ implies µ |= [β]P
So assume ωJαKµ for an arbitrary µ (2)
It remains to show that µ |= [β]P
By definition, this holds if for every ν, µJβKν implies ν |= P .
So assume µJβKν for an arbitrary ν (3)
It remains to show that ν |= P (*)
From (2) and (3) we conclude ωJα ; βKν by definition of Jα ; βK (4)
From (1) and (4) we conclude ν |= P by definition of ω |= [α ; β]P
This conclusion is exactly what we needed to show (*)

The other direction works similarly, essentially just unfolding definitions and some
shallow logical reasoning.

15-414 LECTURE NOTES MATT FREDRIKSON3

Dynamic Logic & Compositional Reasoning L7, 8.5

4.2 Tests

Recall that ωJ?P Kν iff ω = ν if ω |= P .
By definition, then, ω |= [?P]Q iff for all ν with ωJ?P Kν we have ν |= Q. This requires

that Q is true in ω if P is, and imposes no requirement if P is false. Therefore, the right
axiom is

[?P]Q↔ (P → Q)

In the case of tests, let’s also consider ⟨?P ⟩Q. Recall that ω |= ⟨?P ⟩Q iff there is exists a
ν with ωJ?P Kν such that ν |= Q. But that can only be the case if both P and Q are true
in ω. So:

⟨?P ⟩Q↔ (P ∧Q)

4.3 Conditionals

Conditionals are straightforward given the intuition we have built up so far. [if P αβ]Q
should be true if P is true and [α]Q, or P is false and [β]Q.

[if P αβ]Q↔ (P → [α]Q) ∧ (¬P → [β]Q)

Assignments and while loops are trickier, so we postpone introducing axioms for
them to the next lecture.

5 Assignment

The first instinct might be the following axiom for assignment

[x← e]P ↔ (x = e→ P) (WRONG)

However, this is not valid and could therefore lead to unsound reasoning. The cause is
the same as why in the informal generation of verification conditions we modeled as-
signment by creating a fresh “primed” variable. For example, the following is certainly
not valid

̸|= x = 3→ [x← x+ 1](x = 17)

since computing x← x+1 will set x to 4 but the postcondition requires x to be 17. With
the wrong axiom we could prove

(x = 3→ [x← x+ 1]x = 17)↔ (x = 3→ ((x = x+ 1)→ x = 17))

and the right-hand side is true since x = x+ 1 is contradictory.
There are two ways out: one is to carefully substitute e for x with a so-called uniform

substitution. The other is to rename the variable x, something we also did when gener-
ating a verification condition for a loop. This is handled by quantification over a fresh
variable that does not occur in P . We write P (x) for a formula P with (possible) occur-
rences of x, and then P (x′) for the result of renaming all occurrences of x to x′. Then
our axiom becomes

[x← e]P (x)↔ (∀x′. x′ = e→ P (x′))

15-414 LECTURE NOTES MATT FREDRIKSON4

L7, 8.6 Dynamic Logic & Compositional Reasoning

It is important for soundness that x′ is a variable that does not already occur in e or
P (x). We often refer to this as a “fresh variable”.

Our example no longer gives us a contradiction, because

(x = 3→ [x← x+ 1]x = 17)↔ (x = 3→ ∀x′. x′ = x+ 1→ x′ = 17)

is false as it should be.
Let’s use our swap program as an example for generating a verification condition

using the two axioms we already have. We would like to to prove

x = a ∧ y = b→ [x← x+ y ; y ← x− y ; x← x− y]x = b ∧ y = a

We use the axiom for sequential composition twice, to reduce this to

x = a ∧ y = b→ [x← x+ y]([y ← x− y]([x← x− y](x = b ∧ y = a)))

Now we can use the axiom for assignment (and pull out the quantifier)

x = a ∧ y = b→ x′ = x+ y → [y ← x′ − y]([x′ ← x′ − y](x′ = b ∧ y = a))

We use it once more

x = a ∧ y = b→ x′ = x+ y → y′ = x′ − y → [x′ ← x′ − y′](x′ = b ∧ y′ = a)

and a third time

x = a ∧ y = b→ x′ = x+ y → y′ = x′ − y → x′′ = x′ − y′ → (x′′ = b ∧ y′ = a)

At this point we have eliminated the programs and have a formula in pure arithmetic.
This is the verification condition for the original program that no longer references any
code. Substituting out the assumptions we find x′ = a + b, y′ = a, x′′ = b so the
conclusion x′′ = b ∧ y′ = a is true and the whole formula is valid.

6 While Loops

It is easy to come up with an axiom, based on the intuition for conditionals and se-
quences, embodying the semantics of the while loop.

[whileP α]Q↔ (P → [α][while Pα]Q) ∧ (¬P → Q)

Unfortunately, this does not reduce the complexity of the program, since whileP α reap-
pears on the right-hand side.

In the next lecture we learn how to address this issue and come up with a better
axiom to reason about while loops.

References

15-414 LECTURE NOTES MATT FREDRIKSON5

	Introduction
	The Key Idea: Boxes and Diamonds
	Determinism
	Axioms
	Sequential Composition
	Tests
	Conditionals

	Assignment
	While Loops

