
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Arrays and Ghosts

Matt Fredrikson*

Carnegie Mellon University
Lecture 4

January 26, 2023

1 Introduction

At this point we have experimented with simple imperative programs over integers
using loops, recursive functions, and immutable data structures. Today, we start by
looking at mutable data structures, specifically arrays. How do we specify and verify
simple loops that operator on arrays? The key constructs we have (loop invariants and
variants) are sufficient but become more complex because they have to express not only
properties of what we change in an array, but also about the parts that do not change. It
is this additional requirement that makes reasoning about ephemeral (mutable) data
structures in many cases more difficult than reasoning about persistent (immutable)
ones.

After we understand the basics, we consider a particularly important technique to
tame the basics, namely simple models of complex data structures. Consider, for ex-
ample, a red/black tree implementation of a map. To control its complexity we have
introduced the concept of a data structure invariant. In the red/black tree example, this
would include the ordering invariant (keys in left subtrees are all smaller and keys in
the right subtree are all larger than the key in a node), the color invariant (there are no
two adjacent red nodes in the tree), and the black height invariant (the number of black
nodes on any path from a leaf to the root is the same). These are all internal invariants
in the sense that the implementation of the data structure must maintain them but the
client should only care that red/black trees provide a correct and efficient implemen-
tation of a map from keys to values. In this case, we say the map provides a model of

*Closely adapted from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414

L4.2 Arrays and Ghosts

the intended behavior of the data structure. We would like the model to be logical and
as high-level as possible to support reasoning by the client. Maps and sets are common
models. In today’s lecture we exemplify sets as a model of an ephemeral (mutable)
implementation of bit vectors as arrays.

When implementing a data structure we have to maintain the correspondence be-
tween the low-level implementation and the high-level model. The purpose of the
model is to reason about a data structure, but not to compute with it. So we would
like to erase the code that maintains the model: actually computing it would negate all
the advantages of the efficient implementation! This is the primary purpose of ghosts.
They are pieces of code or data that exist solely for the purpose of verification and do
not contribute to the outcome of the computation. This has to be checked by the ver-
ification engine. Ghost variables, or ghost fields of records, can only be used in other
ghost computations. Otherwise, erasing them before the program is run would lead to
incorrect code. This condition is related to the fact that executable contracts in C0 can
not have any externally observable effects: running the program with or without exe-
cutable contracts should yield the same answer (as long as all contracts are satisfied, of
course).

Learning goals. After this lecture, you should be able to:

• Learn to formulate data structure invariants, and how work with them in Why3

• Verify simple imperative programs computing over arrays

• Model data structures using ghosts

2 Data Structure Invariants

As a simple example of data structure invariants we reconsider our implementation of
queues. We would like to extend the interface with a function qsize that returns the
number of elements in a queue. The obvious way to compute this would be to compute
the lengths of the front and back and add them, but the complexity would be linear
in the size of the queue. To answer this query in constant time we add a size field
to the queue and maintain it as we enqueue or dequeue elements. The data structure
invariant here is that the size field always contains the sum of the lengths of the front
and back.

1 type queue ’a = { front : list ’a ;

2 back : list ’a ;

3 size : int }

4 invariant { size = length front + length back }

In the logic, the verifier assumes the invariant when reasoning about queues. This
could create a logical inconsistency (everything is provable!) if the invariant is unsatis-
fiable. For example, the trivial invariant false means any program in the scope of this

15-414 LECTURE NOTES MATT FREDRIKSON1

Arrays and Ghosts L4.3

declaration could now be verified. To avoid this, Why3 will try to prove that there ex-
ists an instance of the data structure for which the invariant is satisfied. For complex
invariants this can be difficult, so WhyML gives you a way to specify an instance of the
data structure satisfying the invariant with a ‘by’ clause. In this particular case it would
be unnecessary, but it is good practice to always supply it.

1 type queue ’a = { front : list ’a ;

2 back : list ’a ;

3 size : int }

4 invariant { size = length front + length back }

5 by { front = Nil ; back = Nil ; size = 0 }

In this example it is relatively easy to update the code to maintain the size field and
Why3 will prove that it is always correct. In constructing the verification condition we
may think of the invariant as being assumed at the beginning of a function (like a pre-
condition) and proved at the end of a function (like a postcondition). In between, the
invariant may be violated, although this possibility does not come into play here. It is
necessary because you may build or modify an element of the data structure incremen-
tally and only at the end does the invariant hold.

The qsize function just returns the size field. In addition, the postcondition certifies
that it is indeed the length of the queue (when viewed as a single sequence of element,
which represents the client’s perspective.

1 let qsize (q : queue ’a) : int =

2 ensures { result = length (sequence q) }

3 q.size

3 Arrays

Because of their efficiency arrays are a common data structure in imperative programs.
Reasoning about arrays requires a number of techniques due to their inherent mutabil-
ity and range requirements for array access.

When we modify an array as we traverse it the loop invariant generally has to be
more complicated. This is because with any assignment to an array element inside a
loop, we lose all information about what any element in the array may be. Therefore, we
generally need to specify the entries of the array we change and how, and in addition
that the remaining entries do not change.

As an example, we consider a function to negate every element in the set. In order to
verify this, we define a predicate negated. As is common (and perhaps we should have
done this for the mem predicate) test the property for a slice of the array in the interval
[lower, upper) (inclusive the lower bound and exclusive the upper bound).

1 predicate negated (a : array int) (b : array int) (lower : int) (upper

: int) =

2 a.length = b.length /\ 0 <= lower <= a.length /\ 0 <= upper <= a.

length

3 /\ forall j:int. lower <= j < upper -> a[j] = -b[j]

15-414 LECTURE NOTES MATT FREDRIKSON2

L4.4 Arrays and Ghosts

We also ensure that the arrays a and b have the same length.
The postcondition for our negation function expresses that the state of the array upon

the return is equal to the negated initial values of the array all the way up to the last
element.

1 let negate (a: array int) : unit =

2 ensures { negated (old a) a 0 a.length}

3 let n = a.length in

4 for i = 0 to n-1 do

5 (* no variant, or invariant on i needed *)

6 invariant { ... }

7 a[i] <- -a[i]

8 done ; ()

This code has two additional new constructs. We use the type unit (whose only element
is ()) to express that the function returns no interesting value. This usually implies that
it mutates some of its arguments, in this case the array a.

We also use a for loop, of the form for i = lower to upper do . . . done for which
we give inclusive bounds. It generates suitable loop invariants for the index lower ≤
i ≤ upper + 1 and a variant of upper + 1 − lower . There is an analogous form for i =
upper downto lower do . . . done.

What remains is to state the invariants regarding the array. Intuitively, at iteration i
we have negated all the elements up to i while the elements at indices greater or equal
to i have remained unchanged. To specify this we find in the useful array.ArrayEq
module the function

1 array_eq_sub (a : array ’a) (b : array ’a) (lower : int) (upper : int)

which is true if for all lower ≤ i < upper we have a[i] = b[i]. We use this where b is the
original version of a.

1 let negate (a: array int) : unit =

2 ensures { negated (old a) a 0 a.length}

3 let n = a.length in

4 for i = 0 to n-1 do

5 (* no variant, or invariant on i needed *)

6 invariant { negated a (old a) 0 i }

7 invariant { array_eq_sub a (old a) i n }

8 a[i] <- -a[i]

9 done ; ()

Observe how the invariants in this form express concisely that the values in the inter-
val [0, i) are negated, while those in the interval [i, n) are still the same as in the original
array. It is generally easier to understand and express the invariant in this form than
using complicated quantified formulas in-line.

It is not necessary to explicitly return the unit element (since the for-loop already
returns the unit element), but we write it out for emphasis.

The code now verifies, but true to our methodology we can also try it out.

1 let test () =

2 let a = Array.make 4 0 in

3 (a[0] <- 1 ; a[1] <- 27 ; a[2] <- 4 ; a[3] <- 3 ;

15-414 LECTURE NOTES MATT FREDRIKSON3

Arrays and Ghosts L4.5

4 (search 1 a , search 2 a , search 27 a))

We obtain the expected answer.

% why3 execute intset.mlw --use="IntSet" ’test ()’

result: (int, int, int) = (0, (-1), 1)

globals:

%

Instead of executing it, we can also prove that this must be the outcome of the function.

1 let test () =

2 ensures { result = (0, (-1), 1) }

3 let a = Array.make 4 0 in

4 (a[0] <- 1 ; a[1] <- 27 ; a[2] <- 4 ; a[3] <- 3 ;

5 (search 1 a , search 2 a , search 27 a))

% why3 prove -P alt-ergo intset.mlw

File intset-test.mlw:

Verification condition search’vc.

Prover result is: Valid (0.01s, 94 steps).

File intset-test.mlw:

Verification condition negate’vc.

Prover result is: Valid (0.03s, 383 steps).

File intset-test.mlw:

Verification condition test’vc.

Prover result is: Valid (0.03s, 160 steps).

4 Diagnosis of Failing Goals

We provide here a brief illustration how we can use the Why3 IDE to isolate failures of
verification. We change the source so that the middle invariant

1 invariant { forall j. 0 <= j < i -> a[j] <> x }

has an off-by-one error

1 invariant { forall j. 0 <= j <= i -> a[j] <> x }

We start the Why3 IDE with

why3 ide intset.mlw

select the outermost goal and hit ‘2’ for a relatively advanced strategy. It cannot prove
the verification condition but splits it into several parts. We can see that many subgoals

15-414 LECTURE NOTES MATT FREDRIKSON4

L4.6 Arrays and Ghosts

are checked as green, but two of them still have question marks. Goals depending on
them higher up in the goal/subgoal tree will then be similarly marked.

The unproven subgoals are labeled [loop invariant init] and [loop invariant preservation]

which indicates that there is a loop invariant that cannot be established initially, nor can
it be shown to be preserved. To see which one we select the second one in the pane on

15-414 LECTURE NOTES MATT FREDRIKSON5

Arrays and Ghosts L4.7

the left and examine the program in the pane on the right.

The IDE will highlight in green the assumptions it uses and in yellow the proof goal it
is trying to prove. Here we see it is a[j] <> x in the middle invariant. Even though it
does not occur here, the IDE will highlight formulas in your program as red if it uses its
negation in the proof attempt. This occurs for the else-branch of conditionals and loop
guards when reasoning about the state after the loop is exited.

Highlighting the other unprovable subgoal (labeled [loop invariant init]) leads
to the same culprit. Some further forensics and thought about this will hopefully reveal
the bug at this point. Fortunately, it is not in the program but in the invariant.

5 Loop Variants

Which postconditions arise from loop variants? The short description “it has to be a non-
negative quantity that strictly decreases in the loop” is somewhat imprecise, so let’s look at
the details. Why3 will check two conditions

1. If the loop guard is true, the variant v has to be nonnegative v ≥ 0.

2. If we go around the loop once, the variant v strictly decreases.

The first point guarantees that if the variant is negative v < 0, the loop body will not be
executed. In other words, the loop must exit if the variant becomes negative.

The first point also guarantees that the variant is nonnegative v ≥ 0 when enter-
ing the loop, and the second point check that it strictly decreases. Eventually, it will
therefore have to become negative, at which point the loop must terminate.

As an example, consider the simple loop

15-414 LECTURE NOTES MATT FREDRIKSON6

L4.8 Arrays and Ghosts

1 let ref i = 0 in (* value here is irrelevant! *)

2 while (i < n) do

3 variant { n - i }

4 i <- i + 1 (* increment has to be positive *)

5 done

Here is the verification condition

goal f’vc :

forall n:int.

forall i:int.

i < n ->

(forall i1:int. i1 = (i + 1) -> 0 <= (n - i) /\ (n - i1) < (n - i))

The assumption i < n means that loop guard is true. The part 0 ≤ (n−i) guarantees that
the variant n− i is nonnegative (which follows from i < n). The part (n− i1) < (n− i)
verifies that the variant strictly decreases, because i1 = i + 1 is the value of i after one
iteration of the loop. We wrote this as i′ when analyzing our first mystery function.

6 Ghosts and Models

As an example of a model we use the standard set library to model a bit vector imple-
mentation of bounded finite sets. Here is an excerpt of the finite set module.

1 module Fset

2 type fset ’a

3 predicate mem (x: ’a) (s: fset ’a)

4 predicate is_empty (s: fset ’a) = forall x: ’a. not (mem x s)

5 constant empty: fset ’a

6 function add (x: ’a) (s: fset ’a) : fset ’a

7 axiom add_def: forall x: ’a, s: fset ’a, y: ’a.

8 mem y (add x s) <-> (mem y s \/ y = x)

9 function remove (x: ’a) (s: fset ’a) : fset ’a

10 axiom remove_def: forall x: ’a, s: fset ’a, y: ’a.

11 mem y (remove x s) <-> (mem y s /\ y <> x)

12 ...

13 end

We start by defining the Bitset module by defining a bset as a record consisting of
an array a, a bound and a ghost field called model containing a finite set of integers. Be-
cause bitsets are mutable (for example, we actually change a bset by adding an element
to it), the model field must also be mutable.

1 type bset = { a : array bool ;

2 bound : int ;

3 mutable ghost model : Fset.fset int }

4 invariant { 0 <= bound <= a.length

5 /\ forall j. 0 <= j < a.length -> a[j] <-> Fset.mem j

model }

6 by { a = Array.make 0 false ; bound = 0 ; model = Fset.empty }

15-414 LECTURE NOTES MATT FREDRIKSON7

Arrays and Ghosts L4.9

The invariant states that element a[i] of the array is true if and only if the number i is in
the model set. We witness the existence of such a bset with the empty array and empty
model. Note that the fields a and bound are immutable, although the elements in the
array are mutable.

To create an empty bset we need a bound on the elements we may add to the set,
which will be the length of the array.

1 let empty_bset (bound : int) : bset =

2 requires { bound >= 0 }

3 ensures { Fset.is_empty result.model /\ result.bound = bound }

4 { a = Array.make bound false ; bound = bound ; model = Fset.empty }

The model is just the empty set. Note that the postcondition states that empty_bset
models the empty finite set.

To add an element i to a bset we just set the corresponding array element to true
(whether it was already true or not). This requires the precondition that the i is in the
permissible range. Because this operation is destructive, modifying the given bset, the
postcondition needs to state the model after the update is equal to the model before the
update, plus the element i. For this purpose we use again the old keyword to refer to
the state of the model at the time the function is called.

1 let add_bset (x : int) (s : bset) : unit =

2 requires { 0 <= x < s.bound }

3 ensures { s.model = Fset.add x (old s).model }

4 s.a[x] <- true ;

5 ghost (s.model <- Fset.add x s.model) ;

6 ()

The assignment to s.model is enclosed in ghost (...) to be explicit that this update
of the model will not be carried out if the program is executed. Instead it is there
to maintain the data structure invariant which must be restored before the function
add_bset exits. Just before this line, by the way, the data structure invariant is false
because we have updated the array but not the model. We can see the significance of
checking the data structure invariance exactly at function boundaries.

Our postcondition will allow the client to reason about the effects of it add operations.
Note that the pre- and post-conditions do not reference the array, only properties of the
model and the bound. The client can reason about the behavior of these functions
without knowing the representation, using only the model.

The remove operation is entirely analogous.

1 let remove_bset (i : int) (s : bset) : unit =

2 requires { 0 <= i < s.bound }

3 ensures { s.model = Fset.remove i (old s).model }

4 s.a[i] <- false ;

5 ghost (s.model <- Fset.remove i s.model) ;

6 ()

We did not implement any more complex operations such as union or intersection,
even though this would certainly be possible. You can find the live-code Bitsetmodule
in the file bitset.mlw.

15-414 LECTURE NOTES MATT FREDRIKSON8

http://www.cs.cmu.edu/~15414/lectures/04-ghosts/bitset.mlw

	Introduction
	Data Structure Invariants
	Arrays
	Diagnosis of Failing Goals
	Loop Variants
	Ghosts and Models

