
MiniProject 2
Verification with Certificates

15-414: Bug Catching: Automated Program Verification

Due Friday, April 21, 2023 (checkpoint)
Friday, April 28, 2023 (final)

You should pick one of the following two alternative mini-projects. You may, but are not
required to, do the mini-project with a partner.

WhyML implementations of the data structures below that have been verified in Why3
may exist online. While you can examine Why3 reference materials, tutorials, and
examples, you may not read or use Why3 implementations of the data structures we
ask you to code. However, you may study or use implementations in other languages
(with appropriate citations), and you can freely use anything in the Why3 standard
library. In addition, the Toccata gallery of verified Why3 program may provide some
insight.

The mini-projects have two due dates:

• Checkpoint on Fri Apr 22 2022, 2022 (50 pts)

• Final projects on Fri Apr 29 2022 (100 pts)
Up to 20 pts you lost on the checkpoint may be recovered on your final submission if you fix
the problems that were noted. You are strongly encouraged to look at our feedback even if
you received a full score.

The mini-projects must be submitted electronically on Gradescope. Please carefully read the
policies on collaboration and credit on the course web pages at http://www.cs.cmu.edu/~15414/
s22/assignments.html.

If you are working with a partner, only one of the two of you needs to submit to each Grade-
scope assignment. Once you have uploaded a submission, you should select the option to add
group members on the bottom of the screen, and add your partner to your submission. Your
partner should then make sure that they, too, can see the submission.

Our main piece of advice is this: Elegance is not optional! For writing verified code,
this applies to both: the specification and the implementation.
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Verification with Certificates MP2.2

The Code

In each problem, we provide some suggested module outlines, but your submitted modules may
be different. For example, where we say ‘let’ it may actually be ‘let rec’, or ‘function’, or
‘predicate’, etc. You may also modify the order of the functions or provide auxiliary types and
functions. You may also change the type definitions or types of functions except for externally
visible ones we use for testing purposes. They are marked in the starter code as DO NOT CHANGE.

You can find starter code in the sat-starter/ and cong-starter/ directories.

The Writeup

The writeup should consist of the following sections:

1. Executive Summary. Which problem did you solve? Did you manage to write and verify all
functions? If not, where did the code or verification fall short? Which were the key decisions
you had to make? What ended up being the most difficult and the easiest parts? What did
you find were the best provers for your problem? What did you learn from the effort?

2. Code Walk. Explain the relevant or nontrivial parts of the specification or code. Point out
issues or alternatives, taken or abandoned. Quoting some code is helpful, but avoid “core
dumps.” Basically, put yourself into the shoes of a professor or TA wanting to understand
your submission (and, incidentally, grade it).

3. Recommendations. What would you change in the assignment if we were going to reuse it
again next year?

Depending on how much code is quoted, we expect the writeup to consist of about 3-4 pages in
the lecture notes style.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file mp2.zip to MP2 Checkpoint (Code) for the checkpoint and to MP2 Final
(Code) for the final handin. Make sure you submit both the code and completed session
folder in the zip. Feel free to adjust our past Makefiles for your purposes, but you are not
required to create one.

• Submit a PDF containing your final writeup to MP2 Final (Written). There is no checkpoint
for the written portion of the mini-project. You may use the file mp2-final.tex as a template
and submit mp2-final.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the writeup to be typeset in LaTeX, but as long as you hand in a readable PDF with
your solutions it is not a requirement. We package the assignment source mp2.tex and a solution
template mp2-final.tex in the handout to get you started on this.
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1 Certificate-Producing SAT Solver

A SAT solver uses a decision procedure to establish the satisfiability of a propositional formula.
The goal of this project is to implement a SAT solver based on DPLL, takes a formula in con-
junctive normal form as an input, and decides whether or not it is satisfiable. When the formula is
satisfiable, the solver returns a satisfying assignment that it has verified correct. When the formula
is not satisfiable, the solver returns a certificate that encodes a resolution proof that the original
formula is unsatisfiable.

A Reminder on DPLL and Certificates

The DPLL algorithm enhances a naive backtracking search algorithm by implementing an opti-
mization called unit propagation: if a clause becomes unit during the search process, it can only be
satisfied by making its unique unassigned literal true and so no branching is necessary. In prac-
tice, this rule often applies in cascade, which can reduce the search space greatly. An example run
of the DPLL algorithm is shown Figure 1. More details on the DPLL algorithm are available in the
Lecture 12 notes.

F =

C0︷ ︸︸ ︷
(a ∨ ¬b) ∧

C1︷ ︸︸ ︷
(¬a ∨ c ∨ ¬d) ∧

C2︷ ︸︸ ︷
(a ∨ c ∨ ¬d) ∧

C3︷ ︸︸ ︷
(¬c ∨ ¬e) ∧

C4︷ ︸︸ ︷
(¬c ∨ e) ∧

C5︷ ︸︸ ︷
(c ∨ d)

Step Partial valuation
Start with an empty partial valuation. {}
Decide a. {a 7→ true}

Decide c. {a 7→ true, c 7→ true}
Propagate ¬e from unit clause C3. {a 7→ true, c 7→ true, e 7→ false}
Clause C4 is conflicting. Backtrack. {a 7→ true}

Decide ¬c. {a 7→ true, c 7→ false}
Propagate d from C5. {a 7→ true, c 7→ false, d 7→ true}
Clause C1 is conflicting. Backtrack. {}

Decide ¬a. {a 7→ false}
Propagate ¬b from unit clause C1. {a 7→ false, b 7→ false}
Decide c. {a 7→ false, b 7→ false, c 7→ true}

Propagate ¬e from unit clause C3. {a 7→ false, b 7→ false, c 7→ true, e 7→ false}
Clause C4 is conflicting. Backtrack. {a 7→ false, b 7→ false}

Decide ¬c. {a 7→ false, b 7→ false, c 7→ false}
Propagate d from unit clause C5. {a 7→ false, b 7→ false, c 7→ false, d 7→ true}
Clause C2 is conflicting. Backtrack. {}

Unsat

Figure 1: Unit propagation in action

In the above example, the procedure returns unsat after first attempting to set a to true, en-
countering a conflict, then setting a to false, and encountering another conflict.
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Verification with Certificates MP2.4

When DPLL returns that a formula is unsatisfiable, it can also produce a resolution proof that the
formula is indeed satisfiable. Recall the resolution rule from Lecture 13. Below, C has no copy of
p and D has no copy of ¬p.

p ∨ C ¬p ∨D

C ∨D
resolution

We say that C ∨D is the resolvent obtained by removing the complementary literals p and ¬p from
p ∨ C and ¬p ∨D, respectively. A resolution proof that ends with the empty clause, equivalent to
⊥, is called a refutation, as it demonstrates the unsatisfiability of the formula.

A representative encoding of a refutation obtained by the DPLL trace above might look as as
follows below on the left; the corresponding proof tree is on the right, with the complementary
literal listed to the right of each step. In the encoding on the left, literals appearing in the formula
are referred to by integers, with a corresponding to 0, b to 1, ¬c to −2, and so forth. Each line begins
with a unique identifier, and contains either an assumption or a resolution step. Lines with assume

list a clause from the formula, e.g., [-2 4] for ¬c∨e. Lines with resolve list the identifiers for two
previous lines, followed by a variable, followed by the resolvent obtained by applying resolution
to the clauses on the identified lines, on the complementary literals specified by the variable. So
resolve 0 1 4 [-2] states that ¬c is the resolvent obtained from steps 0 (assume [-2 4]) and 1
(assume [-2 -4]), on variable e (4).

0 assume [-2 4]

1 assume [-2 -4]

2 resolve 0 1 4 [-2]

3 assume [2 3]

4 assume [-0 2 -3]

5 resolve 3 4 3 [-0 2]

6 resolve 2 5 2 [-0]

7 assume [0 2 -3]

8 resolve 7 3 3 [0 2]

9 resolve 2 8 2 [0]

10 resolve 6 9 0 []

¬c ∨ e ¬c ∨ ¬e
¬c e

c ∨ d ¬a ∨ c ∨ ¬d
¬a ∨ c

d

¬a c

¬c ∨ e ¬c ∨ ¬e
¬c e

a ∨ c ∨ ¬d c ∨ d

a ∨ c
d

a
c

⊥
a

The procedure for obtaining this proof is as follows.

1. Whenever a conflict is encountered on clause C,
• If the conflict occurred because literal l propagated from unit clause C ′, return the re-

solvent of C and C ′ on l.
• Otherwise, return C.

2. Whenever both decisions l and ¬l result in conflicts, apply resolution to the clauses obtained
from Step 1, on complementary literals l and ¬l.

3. When applying resolution in Steps 1 and 2, if one clause does not involve the literal l, then
skip resolution and return that clause instead.
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1.1 “Baby” SAT (Checkpoint, 50 points)

In Assignment 5, you specified and implemented some simple operations that can be performed
over formulas in CNF.

type var = int

type lit = { var : var ; sign : bool }

type clause = list lit

type cnf = {

clauses : array clause ;

nvars : int ;

mutable ghost model : list clause

}

type valuation = array bool

We will pick up where we left off, making use of the same types and functionality that you imple-
mented before.

Certificate checking

However, in its current form this solver does not produce certificates, and will always raise an
exception when it encounters an unsatisfiable formula. But in order to produce a resolution cer-
tificate, it needs (at least) a definition of the type certificate, and more importantly a definition
for valid_refutation and a procedure to ensure that a given certificate meets this definition.

Task 1 (5 points). Define a type certificate that will encode resolution proofs of unsatisfiability.
You may choose whatever representation you like, i.e. proofs can be trees with leaves correspond-
ing to clauses from the formula, or flat sequences with fields that identify antecedents at other
positions in the sequence. Before proceeding, you should think carefully about which encoding
to use, and consider looking ahead to future tasks to inform your choice. Note that you may de-
fine other types that are referenced by certificate, e.g., if you want to define a type for each
individual step in a resolution proof.

Task 2 (15 points). Define a predicate valid_refutation over a certificate p and formula cnf. It
should the set of certificate objects which correspond to correct resolution proofs of unsatisfia-
bility. In other words, the predicate should be true if and only if:

• Each step encoded in a certificate is either a correct application of the resolution rule, or
an assumption of a clause appearing in the original CNF formula.

• The final step of the proof encoded in the certificate is the empty clause.

As in the previous task, you may write several “helper” predicates or functions that are used to
define valid_refutation, and are encouraged to do so to make your specification more readable.

Task 3 (30 points). Implement the function check_refutation, which accepts a certificate p and
CNF formula cnf, and returns true if and only if the certificate is a valid refutation for the formula.
If you need to change the signature to make it recursive, that is fine, but you should provide a
variant to ensure that this procedure terminates. As before, you are encouraged to implement
helper functions that accomplish much of the work needed by check_refutation, to make your
code easier to understand.
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let check_refutation (p : certificate) (cnf : cnf) : bool

requires { true } (* Any preconditions that you find necessary *)

ensures { result <-> valid_refutation p }

As you complete this task, we encourage you to make use of the helper functions provided in
the starter code. There are functions for performing basic tests on clauses and literals that may
prove useful when implementing your certificate checker.

The only verification that you are required to perform is the contract given in the listing of
check_refutation above (note that diverges is not part of its specification, so you should prove
that it terminates). You may need to write other contracts and invariants that, for example, ensure
that array accesses are in bounds.

What not to change. To allow us to check your work effectively, do not change the signature of
sat, or any of the type definitions listed at the beginning of this section: var, lit, clause, cnf,
and valuation.

1.2 DPLL (Final submission, 80 points)

Below is a basic SAT solver that builds on the types we have defined, using exhaustive search to
find a satisfying assignment. According to its specification, if it does not find a satisfying assign-
ment, then it should return a certificate that amounts to a valid refutation for the original formula.

let sat (cnf : cnf) : solver_result =

ensures { forall t. result = Assignment t -> sat_with t cnf }

ensures { forall p. result = Proof p -> valid_refutation p cnf }

raises { InvalidCert }

let t = make cnf.nvars false in

let rec split i =

(* Invariants in solver.mlw *)

if i = cnf.nvars then

if eval_cnf t cnf then raise Sat

else begin

t[i] <- false ; split (i + 1) ;

t[i] <- true ; split (i + 1) ;

end

in try split 0 ; raise InvalidCert with Sat -> Assignment t end

Note that the return type for this solver is solver_result:

type solver_result =

| Assignment valuation

| Proof certificate

Most importantly, although this implementation satisfies its contract, it will always raise InvalidCert
when it encounters un unsatisfiable result. Your goal will be to adapt this basic solver in the fol-
lowing ways:

• Use partial assignments so that it is not necessary to assign all variables before checking for
conflicts.

• Apply unit propagation immediately after splitting on a variable, to avoid wasting time on
unnecessary case splits.
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• Construct resolution certificates using your types from the checkpoint, and call check_refutation
before returning a proof.

In all of the tasks below, your primary concern will be implementing correct functionality. You
do not need to provide complete specifications to facilitate a full verification of your code, beyond
what is necessary to ultimately ensure that the top-level postconditions on sat can be verified.
You can annotate any function with diverges to avoid needing to prove termination.

Note: It is advisable to read through all of the tasks before starting. The following tasks
are listed in an order determined by dependency, i.e., the functionality in Task 7 depends on
the functionality described in Tasks 4, 5, and 6. However, you may benefit from first writing
prototypes and contracts for some of the functions from earlier tasks, and attempting to imple-
ment Tasks 7 and 8 first, and your approach to implementing the solver (Task 8) may change
the way that you do unit propagation (Task 7), which may in turn impact choices that you make
for earlier functions.

Essential Primitives

A variable in a partial valuation can take values True or False if it is assigned a value, or None if is
unassigned. A complete valuations relates a with partial valuation as follows. A partial valuation
is said to be compatible with a valuation ρ if both agree on every variable which is assigned by p.
In particular, an empty partial valuation is compatible with any valuation.

type pval = array (option bool)

predicate compatible (pval : pval) (rho : valuation) =

forall i:int, b:bool. 0 <= i < length pval ->

pval[i] = Some b -> rho[i] = b

Task 4 (15 pts). Implement a function partial_eval_clause that takes a partial valuation p along
with a clause C as its arguments and returns:

• [Satisfied] if and only if p satisfies C

• [Conflicting] if and only if p and C are conflicting

• [Unit l] if c is a unit clause with unassigned literal l (for partial valuation p)

• [Unresolved] in every other case.

This corresponds to the following type and function definition:
type clause_status =

| Satisfied

| Conflicting

| Unit lit

| Unresolved

let rec partial_eval_clause (p : pval) (c : clause) : clause_status

Task 5 (15 pts). Implement a function partial_eval_cnf that takes a partial valuation p along with
a CNF formula cnf as its arguments and returns:

• [Sat] if and only if p satisfies every clause of cnf . In this case, cnf is true for every valuation
that is compatible with p and the search can stop.

MINIPROJECT 2 DUE FRIDAY, APRIL 21, 2023 (CHECKPOINT)
FRIDAY, APRIL 28, 2023 (FINAL)



Verification with Certificates MP2.8

• [Conflict] if p is conflicting with at least one clause of cnf . In this case, cnf is false for every
valuation that is compatible with p and backtracking is needed.

• [Unit clause l] only if cnf admits a unit clause whose unassigned literal is l. If cnf ad-
mits more than one unit clause, which one is featured in the argument of Unit clause is
unspecified.

• [Other] in every other case.

Your partial eval cnf function should raise an exception Conflict found when a conflict is
found. Note that you do not need to find all of the conflicting clauses—it is fine to return an
exception with the first conflict found. Likewise, it should raise Unit found when a unit clause
is found, and may return the first unit clause found. This corresponds to the following type and
function definition:

exception Conflict_found

exception Unit_found lit

type cnf_status =

| Sat

| Conflict

| Unit_clause lit

| Other

let partial_eval_cnf (p : pval) (cnf : cnf) : cnf_status

Managing Solver State

Recall that in the DPLL algorithm, when a conflict arises during search, one has to backtrack
before the last decision point. A naive way to do so would be to create a full copy of the current
partial valuation every time a choice is made, but this is terribly inefficient. A better alternative is
to maintain a list of every variable that has been assigned since the last decision point and to use
this list as a reference for backtracking.

Task 6 (5 pts). Implement a backtrack function that unassigns the variables on a given list in a
given partial valuation:

let rec backtrack (diff : list var) (pval : pval)

You are not required to use this signature, and if you find it useful to add additional arguments,
you are free to do so.

The core of DPLL is unit propagation, which you should implement in a function set_sign

that changes a variable in a partial valuation from None to Some b, for a value b, and propagates
any resulting unit literals until there are no further opportunities to do so. Because the information
needed to construct a resoultion certificate is generated during unit propagation, it is important to
think carefully about how you will implement this functionality. You are free to write the signature
of set_sign however you find appropriate, but one suggestion is to use:

exception Sat_found

let rec set_sign

(l : lit) (pval : pval) (cnf : cnf) : (bool, option clause, list var, list (

option (clause, var)))

With this signature, set_sign behaves as follows.
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• It raises a Sat_found exception in case the CNF becomes satisfied.
• If it reaches a conflict, then the first component of its return value is true, and its second

component is Some c, where c is either:
– The clause on which it encountered a conflict, if there was a conflict found before any

unit propagation was performed.
– If the conflict was encountered in clause C1 after unit-propagating literal l from unit

clause C2, and l is in C2, then the resolvent of C1 and C2 on literal l.
• If it does not reach a conflict, and the CNF is not satisfied after exhausting unit propagation,

then the first component is false, and the second component is None.
• Its third component is a list of all of the variables that it assigned in pval prior to returning,

which the solver can use for backtracking.
• The last component, of type list (option (clause, var)), is a list of the unit clauses and

corresponding literals encountered during propagation.
The benefit of returning this information from each variable assignment and propagation is, of
course, that it can be used to construct a resolution certificate. Whenever a conflict is detected,
then the clause returned by set_sign can be used along with the list of unit clauses and literals
(returned in the fourth component) to generate a sequence of steps to add to the certificate.

Task 7 (20 pts). Implement a function set_sign that implements the functionality described above.

Updating the Solver

Task 8 (25 pts). Make necessary changes to the sat function listed at the beginning of this sec-
tion to make use of partial valuations, putting all the previous pieces together to either prove the
satisfiability of a propositional formula, or provide a resolution certificate in cases of unsatisfia-
bility. The updated function should satisfy the contract that it is given in the starter code (and
shown in the handout), but you do not need to prove termination. You should change the type of
solver_result to present partial valuations rather than complete assignments.

type solver_result =

| Assignment pval

| Proof certificate

What not to change. To allow us to check your work effectively, do not change the signature of
sat, or any of the type definitions listed at the beginning of this section or the previous: var, lit,
clause, cnf, valuation, clause_status, cnf_status, and pval.

1.3 Writeup (Final Submission, 20 pts)

Task 9 (20 pts). Writeup, to be handed in separately as file mp2-final.pdf.
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2 Congruence Closure

At the core of decision procedures or theorem provers for a variety of theories are algorithms
to compute the congruence closure of some equations including uninterpreted function symbols.
Even more fundamentally, congruence closure itself relies on computing and maintaining equiv-
alence classes of terms. An efficient data structure for this purpose is called union-find. You may
read, for example, the Wikipedia article on Disjoint-Set Data Structure. Union-find also has other
applications, such as in Kruskal’s algorithm for minimum spanning trees.

For the checkpoint, you will implement union-find and partially prove it correct and also pro-
duce checkable certificates. For the final submission you will use your union-find algorithm to
implement congruence closure, which will also produce a certificate.

2.1 Bare Union-Find (Checkpoint, 25 pts)

All elements that are to be divided into equivalence classes are represented as integers 0 ≤ x < size.
In a separate data structure maintained by a client, these could be mapped, for example, to terms.

Throughout the algorithm, each equivalence class maintains a unique representative element
which we visualize as the root of a tree. In addition, each element has a parent, with the represen-
tative of a class functioning as its own parent. We call such representatives roots.

To determine if two elements x and y are in the same equivalence class we ascend the tree to
find the representative of the classes for x and y, say, x̂ = findx and ŷ = find y. If x̂ = ŷ then x and
y are in the same class; otherwise they are not.

Initially, all elements are in their own (singleton) equivalence class and we call union to merge
equivalence classes. The operation unionx y should merge the equivalence classes for x and y. We
do this by calculating the representatives x̂ = findx and ŷ = find y. If these are equal we are done.
Otherwise, we set the parent of x̂ to be ŷ or the parent of ŷ to be x̂.

To decide between these two alternatives we maintain a rank for each root z that is a bound on
the longest chain of parent pointers for the tree below z. We set the parent of x̂ to ŷ if x̂ has strictly
smaller rank than ŷ and vice versa. If the ranks are equal, the choice is arbitrary, and we also have
to increase the rank of the resulting root by one.

Task 1 (25 pts). Implement the bare union-find data structure with the following types:

type elem = int

type uf = { size : int ;

parent : array elem ;

rank : array int }

Here, parent[x] is the parent of element x, and x itself for the root. rank[x] is the rank of x (only
relevant if x is a root). Implement the following predicates and functions, following the informal
description and other sources as you see fit.

predicate is_root (uf : uf) (x : elem)

let uf_new (n : int) : uf

let find (uf : uf) (x : elem) : elem

let union (uf : uf) (x : elem) (y : elem) : unit

• is root uf x is true iff x is a root in uf .
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• uf new n = uf returns a new union-find structure over elements 0 ≤ x < n, with each
element a root.

• find uf x = x̂ returns the root x̂ representing the equivalence class containing x.

• union uf x y modifies uf by merging the classes containing x and y.

Your contracts should be strong enough to verify that all array accesses are in bounds and that
the result of find is a root. You do not need to verify termination (use diverges instead) or any
other correctness properties of your functions.

Because the contracts essentially only specify safety and not correctness, it is your responsibility
to make sure your code properly implements the union-find data structure. You do not need to
implement the so-called path compression during the find operation (which further improves
the already excellent bound of n log(n) for n successive union-find operations). We recommend
writing test cases, but we do not require them as part of your submission.

2.2 Producing Certificates (Checkpoint, 25 pts)

In many practical scenarios where decision procedures or theorem provers are used, it is imprac-
tical to formally prove their correctness. That is unfortunate, as we want to be able to rely on the
results. To close this gap, we can extend the algorithm so it produces a certificate, or even verify
that it could produce a certificate when it gives a positive answer.

Applying this to union-find means we would like to instrument the code so that it can produce
a certificate showing that any element is equivalent to the representative of the equivalence class it
is in. We call a certificate that x and y belong to the same equivalence class a path from x to y. We
have the following constructors for paths, derived from the axioms for equivalence relations:

• reflx is a path from x to x.

• sym p is a path from y to x if p is a path from x to y.

• trans p y q is a path from x to z if p is a path from x to y and q is a path from y to z.

Whenever unionx y is called, the client of the data structure must provide a path from x to y which
somehow justifies the equivalence. For example, if x = a + 1 and y = 1 + a, the client might
provide a path explaining that x and y are equivalent due to the commutativity of addition. The
implementation of union-find takes these on faith (they are the client’s responsibility, after all) but
can apply refl, sym, and trans to build longer paths from those that are given.

We keep the type of path abstract so that the implementation of union-find cannot “fake” any
paths. The properties listed above are summarized using the axioms below.

type path (* abstract *)

function refl (x : elem) : path

function sym (p : path) : path

function trans (p1 : path) (x : elem) (p2 : path) : path

predicate connects (p : path) (x : elem) (y : elem)

axiom c_refl : forall x. connects (refl x) x x

axiom c_sym : forall p x y. connects p x y -> connects (sym p) y x

axiom c_trans : forall x y z p q.

connects p x y -> connects q y z -> connects (trans p y q) x z
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The union-find data structure now maintains a ghost array path of paths, where for every el-
ement x, path[x] is a path connecting x to parent[x]. This property should be guaranteed by the
data structure invariants. The information is sufficient to produce a path from x to the represen-
tative x̂ of its equivalence class.
Task 2 (25 pts). We update the interface as follows:

type uf = { size : int ;

parent : array elem ;

rank : array int ;

ghost path : array path }

let uf_new (n : int) : uf

let find (uf : uf) (x : elem) : (elem, ghost path)

let union (uf : uf) (x : elem) (y : elem) (ghost pxy : path) : unit

with the specifications

• find uf x = (x̂, p) should ensure that p is a path from x to x̂. This path should be constructed
while traversing the data structure. Your postcondition should enforce that p is indeed a
path from x to x̂.

• union uf x y p requires that p is a path from x to y. This means the client has to supply the
evidence for the equality x and y. Since union modifies uf by merging the classes of x and y,
it will need to update the path field to maintain the data structure invariants.

Your code should include sufficient data structure invariants and contracts to guarantee these
properties for find and union. Your contracts still do not need to express, for example, that union
really represents a union. It therefore remains your responsibility that the code is correct.

2.3 Implementing Congruence Closure (Final Submission, 40 pts)

You may want to review the description of congruence closure in Lecture 18 or other online infor-
mation you find helpful. We will implement incremental congruence closure in which equations are
asserted one by one and equality can be checked at any time. So at the high level we would have
the following interface:

type eqn

type cc

let cc_new (n : int) : cc

let merge (cc : cc) (e : eqn) : unit

let check_eq (cc : cc) (e : eqn) : bool

where cc is the type of the data structure maintaining the congruence closure, and cc new n creates
a new data structure over constants 0, . . . , n− 1 where each element is only equal to itself.

merge cc e updates cc to incorporate the equation e, and check eq cc e returns true if the equation
e follows from the equations asserted so far and the standard inference rules in the theory of
equality with uninterpreted function symbols (namely: reflexivity, symmetry, transitivity, and
monotonicity).

2.3.1 Representation of Terms

It is convenient to represent all constants as integers 0, . . . , n − 1, as in the implementation of
union-find. For a maximally streamlined implementation we represent all terms in Curried form.
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type const = int

type term = Const const | App term term

Here are some examples, using a = 1, b = 2, etc.

Term Curried WhyML
c c Const 3
f(a) (f a) (App (Const 6) (Const 1))
f(g(a), b) ((f (g a)) b) (App (App (Const 6) (App (Const 7) (Const 1))) (Const 2))

During congruence closure and other operations we need to consider equality between subterms
of the input. In order to support this in a simple and efficient way we translate terms to so-called
flat terms using new constants that act as names for the subterms. For example, the term f(g(a), b)
(or ((f (g a)) b) in Curried form) might have the name c3 with the definitions

c1 = g a
c2 = f c1
c3 = c2 b

This representation means we only have to consider two kinds of equations in our algorithm,
c = (App a b) for constants a and b and a = b.

type const = int

type eqn =

| Defn const const const (* c = App a b *)

| Eqn const const (* a = b *)

2.3.2 The Incremental Congruence Closure Algorithm

In order to accommodate the definitions above, we slightly modify the interface.
module CongBare

use ...

type const = int

type eqn =

| Defn const const const (* c = app a b *)

| Eqn const const (* c = a *)

use UnionFindBare as U

type cc = { size : int ;

uf : U.uf ;

mutable eqns : list eqn }

let cc_new (n : int) : cc

let merge (cc : cc) (e : eqn) : unit

let check_eq (cc : cc) (a : const) (b : const) : bool

end

Here, UnionFindBare is your bare implementation from the checkpoint. You may make minor
modifications and extensions to its interface for the purposes of the final submission.
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The field cc.uf should be a union-find data structure over the constants 0 ≤ c < cc.size and
cc.eqns should be a list of the equations you need for the computation of your algorithm.

At a high level, merge cc e should assert the equation e. This proceeds in two phases. In the
first phase, we suitably update cc.uf and cc.eqns to join equivalence classes. In the second phase,
we repeatedly propagate the equality to create a representation of the congruence closure.

The function check eq cc a b should just consult the union-find data structure to see if a and b
are in the same equivalence class.

Your implementation does not need to be particularly efficient, but it should be polynomial.
Furthermore, we constrain it to use union-find to maintain equivalence classes so that further stan-
dard improvements would be straightforward to make. Such further improvements are generally
related to indexing to avoid searching through lists.

Your contracts should be sufficient for safety of all array accesses, but do not otherwise have to
express correctness. Furthermore, you do not need to ensure termination.

As a consequence, you will need to test your implementation, and we will do so as well while
grading. In order to facilitate our testing harness, you must adhere to the significant parts of the
interface (namely, types const and eqn, and the types of the functions cc new, merge, and check eq).
You may, however, modify or add fields to the cc structure, since testing will not rely on these
internals.

Task 3 (40 pts). Implement and verify the safety the CongBare module as specified above.

We recommend you test your implementation but we do not formally require it. You should
hand in file cong-bare.mlw with modules UnionFindBare and CongBare. The code quoted in this
handout is in the cong-starter/ directory.

2.4 Instrumenting Congruence Closure (Final Submission, 40 pts)

For the final submission you will have to produce and verify the correctness of proofs of equal-
ity. We reuse here the abstract type of path in the union-find data structure, extended with two
new constructors: hyp e and mono p q e e′ to represent hypotheses (assumptions) and the rule of
monotonicity.

hyp (Eqn a b) is a path from a to b. This will be used if the client asserts an equation a = b by
calling merge cc (Eqn a b).

mono p q (Defn c a b) (Defn c′ a′ b′) is a path from c to c′, if p is a path from a to a′ and q is a path
from b to b′. This will be used if the algorithm uses monotonicity to conclude App a b = App a′ b′

from the equalities a = a′ and b = b′.
Note that any equation used as an argument to hyp and mono should be one directly passed

into merge. This could be enforced in a complicated manner with an additional layer of abstraction,
but we forego this complication since the client can still check separately that all uses of hyp and
mono in a path rely only on equations it asserted.

module CongPath

use ...

type const = int

type eqn =

| Defn const const const (* c = app a b *)
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| Eqn const const (* c = a *)

use UnionFindPath as U

function hyp (e : eqn) : U.path

axiom c_hyp : forall a b.

U.connects (hyp (Eqn a b)) a b

function mono (p : U.path) (q : U.path) (e : eqn) (e’ : eqn) : U.path

axiom c_mono : forall p q a a’ b b’ c c’.

U.connects p a a’ -> U.connects q b b’ ->

U.connects (mono p q (Defn c a b) (Defn c’ a’ b’)) c c’

type cc = { size : int ;

uf : U.uf ;

mutable eqns : list eqn }

let cc_new (n : int) : cc

let merge (cc : cc) (e : eqn) : unit

let check_eq (cc : cc) (a : const) (b : const) : (bool, ghost (option U.path))

end

We do not supply a path to merge since the merge function itself can construct it, as explained
above.

For this instrumentation you may arbitrarily change your bare implementation, except that
you should use your UnionFindPath.

Note that your contracts should guarantee two things: (1) safety (as before) and (2) the path
provided with the result of check eq cc a b when a and b are in fact equal, must go from a to b.

Task 4 (40 pts). Add paths to serve as certificates to your bare implementation as specified above.

We recommend you test your implementation but we do not formally require it. You should
hand in file cong-path.mlw with modules UnionFindPath and CongPath. The code quoted in this
handout is in the cong-starter/ directory.

2.5 Writeup (Final Submission, 20 pts)

Task 5 (20 pts). Writeup, to be handed in separately as file mp2-final.pdf.
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