
Assignment 6
Equality & Certificates

15-414: Bug Catching: Automated Program Verification

Due Friday, April 7, 2023
80 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/s22/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst7.zip to Assignment 7 (Code). You can generate this file by running
make handin. This will include your solutions bfs.mlw.

• Submit a PDF containing your answers to the written questions to Assignment 7 (Written).
You may use the file asst7.tex as a template and submit asst7.pdf.

Compiling and running

Detailed instructions for compiling and running your implementation on Linux, macOS, Docker,
and WSL are contained in readme.md. This file also contains basic guidelines to get you started
writing tests cases for your solution.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst7.tex with handout to get you started on this.

ASSIGNMENT 6 DUE FRIDAY, APRIL 7, 2023
80 PTS

http://www.cs.cmu.edu/~15414/s22/assignments.html

Equality & Certificates HW6.2

1 Uninterpreted Functions

Task 1 (5 pts). Program equivalence. The following programs are equivalent, in that they will
terminate with the same values in e and f when started in states with the same values for a, b, c,
and d.

1

2

3 e := (a + b) * (c + d)

1 g1 := a + b;

2 g2 := c + d;

3 f := g1 * g2

Write a formula in the theory of equality and uninterpreted functions that demonstrates the equiv-
alence of these programs. That is, write a formula that is unsatisfiable if and only if these programs
assign the same values to e and f when executed on the same values of a, b, c, and d.

Task 2 (10 pts). Demonstrate the unsatisfiability of your solution to Task 1 by running the congru-
ence closure algorithm on it. Your solution should show the steps of the algorithm with a level of
detail comparable to what is demonstrated in Examples 7 and 8 of Lecture 18.

Task 3 (5 pts). Unfortunately, it is not always possible to prove that two programs are equivalent
using uninterpreted functions. Write a program that is equivalent to the first (i.e., produces the
same value in f as e := (a + b) * (c + d)), but for which your approach for Task 1 produces a
satisfiable formula. We recommend that you check your work by applying the congruence closure
algorithm to extract a satisfying assignment, but this is not required to receive credit.

2 Checkable Certificates

Today’s SAT solvers can be very complicated, with many high-level and low-level optimizations.
As such, they cannot be proved correct in practice. Instead, they produce checkable certificates that
allow a client to verify the correctness of the outcome of the computation. The certificate checker should
be small, trustworthy, and ideally proved correct even if the solver itself can not be proved. The
ultimate outcome of a computation would then be sat or unsat or error which means that the
certificate did not pass the checker, indicating a bug in the SAT solver. In this way we can restore
our trust in the answer of the SAT solver even if it is quite complicated.

In this problem we explore checkable certificates for the problem of finding the shortest path
from a source to a sink in a directed graph. To keep it as simple as possible, we assume all distances
between vertices are 1. Under these assumptions, breadth-first search through the graph will find
the shortest distance. We implement breadth-first search by using a queue containing the current
frontier of the search.

Dijkstra’s algorithm for shortest paths (where not all edges have unit length) can in fact be
verified, but requires induction for some of the steps. See http://toccata.lri.fr/gallery/

dijkstra.en.html.

2.1 The Interface Layer

We make the representation of vertices explicit as integers so you (and we) can easily test the
implementation. The top-level interface function is

ASSIGNMENT 6 DUE FRIDAY, APRIL 7, 2023
80 PTS

http://toccata.lri.fr/gallery/dijkstra.en.html
http://toccata.lri.fr/gallery/dijkstra.en.html

Equality & Certificates HW6.3

1 use fmap.MapAppInt as Map

2

3 type vertex = int

4 type graph = Map.t (list vertex)

5 type path = list vertex

6

7 type outcome = NoPath | SomePath path | Error

8

9 let shortest_path (vs:list vertex) (g:graph) (v:vertex) (u:vertex) : outcome

with the following interpretation:

vs the list of vertices in the graph g
g the graph g as a map from vertices to a list of adjacent vertices
v the starting vertex of the potential path
u the ending vertex of the potential path

The outcome has the following straightforward interpretation

NoPath there is no path from v to u
SomePath us a path from v to u as a list of vertices, not including v
Error the certificate could not be verified

Note that the path us must be a shortest path (which is not necessarily unique). The empty path
Nil represents the zero-length path from v to itself, so then v = u.

2.2 The Inner Layer

The algorithm will take a graph and a starting vertex v and return a visited map that records for
each reachable vertex u a pair (pu, du) where pu is predecessor of u on a shortest path from v to u
and du is the distance from v.

1 type visited = Map.t (vertex , dist)

2

3 let bfs (g:graph) (v:vertex) : visited

The function bfs should maintain a queue representing the frontier of the exploration of reachable
vertices, starting with the single node v at distance 0. You may consult various sources for such an
algorithm, but note that since all edges have distance 1 you do not need a priority queue as you do
for Dijkstra’s algorithm, just a simple queue. The starter code supplies the implementation from
Lecture 3, augmented so it can also function as a stack (see below).

All the functions you write may be marked as diverges and you do not need to prove their
correctness. You may nevertheless need some pre- and post-conditions for your functions to make
sure that result checking in the outer layer can run correctly.

2.3 The Outer Layer

In the outer layer we can easily compute the outcome from the visited map computed by breadth-
first search. Recall:

ASSIGNMENT 6 DUE FRIDAY, APRIL 7, 2023
80 PTS

Equality & Certificates HW6.4

1 type path = list vertex

2 type outcome = NoPath | SomePath path | Error

3

4 let bfs (g:graph) (v:vertex) : visited

5 let shortest_path (vs:list vertex) (g:graph) (v:vertex) (u:vertex) : outcome

Then, if u is not in the domain of visited then there is no path from v to u. If visited maps u
to (pu, du) then we can follow the predecessors all the way back to v, assembling a path in the
process.

2.4 Certificate Checking

We use the visited map to check correctness of the answer as follows:

1. If u is not in the domain of visited we should check that the visited map is saturated, that
is, when u has been visited, then every neighbor of u has also been visited. This should
be checked straightforwardly by going through all vertices in the graph or the domain of
visited .

2. If u is in the domain of visited , we should check three properties:

(a) The path computed by tracing back through predecessors is indeed a valid path in the
graph.

(b) The visited map should record minimal distances from v for every reachable node u.
We check this by considering every a and b in the visited map with an edge from a to
b. It must be the case the db ≤ da + 1, that is, there could be a shorter path to b than
through a but not a longer one. This could underestimate the distance (if there is a bug
in the code and a shorter path does not actually exist), so we also need to check that the
computed path from v to u has the length predicted by du .

2.5 Testing

We need to test the inner layer (algorithm) as well as the outer layer (certificate checker). This
means there needs to be a possibility of introducing a bug into your implementation. We achieve
this via the function insert :

1 use Queue as Q

2

3 let ref depth_first = false

4

5 let insert (x:’a) (q:Q.queue ’a) : Q.queue ’a =

6 if depth_first then Q.push x q else Q.enq x q

You should use this function to insert a vertex and its distance into the frontier. When depth first is
false then your algorithm should behave like breadth-first search and therefore obtain the shortest
path. When depth first is true then your algorithm should behave like depth-first search and
therefore does not always compute the shortest path.

In order to test the implementation you should include a module BfsTest with at least 5 test
cases test1 through test5 , at least one of which should use depth-first search and return an incor-
rect path that is then rejected by the result checker.

ASSIGNMENT 6 DUE FRIDAY, APRIL 7, 2023
80 PTS

Equality & Certificates HW6.5

The autograder will test your code on a number of examples, both with breadth-first and
depth-first search, expecting the certificate checker to fail on some depth-first examples so that
the overall outcome will be the value Error. If the outcome is incorrect, the test function should
raise the exception Incorrect.

2.6 Contracts and Verification

Since this is an exercise is certificate checking, you should ideally verify that the certificate checkers
are correct (if not the core search algorithm). However, since even correctness of the checker
requires induction, and termination is also not entirely straightforward, you are relieved of the
responsibility to verify them. Instead, we rely on the simplicity of the certificate checker.

You may still need or want to have contracts to guarantee that operations such as looking up
a vertex in a map are well-defined. If you have such contracts, they need to be verified and the
proof should properly replay.

2.7 Grading

Your code, including the test cases, should verify in Why3 and replay should work. You only need
contracts to the extent

We intend to distribute points as follows:

1. [20 pts] A correct implementation breadth-first search (function bfs)

2. [20 pts] A correct implementation of the certificate checker (function shortest path)

3. [10 pts] Test cases (functions test1 , . . . , test5)

4. [10 pts] Verification of contracts to the extent they are present

ASSIGNMENT 6 DUE FRIDAY, APRIL 7, 2023
80 PTS

	Uninterpreted Functions
	Checkable Certificates
	The Interface Layer
	The Inner Layer
	The Outer Layer
	Certificate Checking
	Testing
	Contracts and Verification
	Grading

