
Assignment 1
Variations on a Theme

15-414: Bug Catching: Automated Program Verification

Due 23:59pm, Friday, February 3, 2023
65 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

Working With Why3

Before you begin this assignment, you will need to install Why3 and the relevant provers. To do
so, please follow the installation instructions on the course website (https://www.cs.cmu.edu/
~15414/misc/installation.pdf).

To help you out with Why3, we’ve provided some useful commands below:

• To verify using the command line, run why3 prove -P <prover> <filename>.mlw. This is
useful for simple programs where more fine-grained control over the provers is unnecessary,
as well as for intermediate checking. However, your final submission should include proof
sessions as created by the IDE.

• To open the Why3 IDE, run why3 ide <filename>.mlw.

– When you attempt to prove the goals in a file filename.mlw using the IDE, a folder
called filename will be created, containing a proof session. Make sure that you always
save the current proof session when you exit the IDE. To check your session after the
fact, you can run the following two commands:

why3 replay filename # should print that everything replayed OK

why3 session info --stats filename # prints a summary of the goals

– Although it’s not possible to modify code directly from the IDE, if you make changes
in a different editor (VSCode, Atom, etc.), you can refresh the IDE session with Ctrl+R.

What To Hand In

You should hand in the file asst1.zip, which you can generate by running make. This will include
all of the raw mlw files, as well as the proof sessions created by the IDE.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, FEBRUARY 3, 2023
65 PTS

http://www.cs.cmu.edu/~15414/assignments.html
https://www.cs.cmu.edu/~15414/misc/installation.pdf
https://www.cs.cmu.edu/~15414/misc/installation.pdf


Variations on a Theme HW1.2

1 The Fine Print (10 pts)

Unlike software license agreements that nobody ever reads, program contracts should be studied
carefully because they might not mean what you think at first and you may be left holding the
bag. The following is an incorrect attempt to implement an iterative summation function (which
you can find in the file sum.mlw).

1 module Sum

2

3 use int.Int

4

5 function sum (n : int) : int

6 axiom sum0: sum 0 = 0

7 axiom sumn: forall n. n > 0 -> sum n = n + sum (n - 1)

8

9 let sum(n:int) : int =

10 ensures { result = sum n }

11 let ref i = 0 in

12 let ref r = 0 in

13 while i < n do

14 invariant { r = sum i }

15 variant { n-i }

16 r <- r + i ;

17 i <- i + 1 ;

18 done ;

19 r

20

21 end

Task 1 (10 pts). In each of the following sub-tasks you should change the contracts, and only the
contracts (except in part 4) of the above incorrect implementation, so that the command

why3 prove -P alt-ergo sum.mlw

succeeds in verifying the code.

1. You may remove two lines.

2. You may add disjunction \/ and truth true, as many copies as you wish.

3. You may add comparison < between variables and implication ->, as many copies as you
wish.

4. You may swap any two lines (not restricted to contracts), and add at most two contracts.

Name your functions sum_i for 1 ≤ i ≤ 4 and place them in the file sum.mlw.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, FEBRUARY 3, 2023
65 PTS



Variations on a Theme HW1.3

2 Assignment 0, revisited (10 pts)

In mystery3.mlw, you will find a modified version of the function from the previous assignment.
1 module Mystery3

2 use int.Int

3

4 function abs (n : int) : int = if n >= 0 then n else (-n)

5

6 let g (n : int) : int =

7 ensures { result = (abs n) + 1 }

8 let ref a = 0 in

9 let ref b = 1 in

10 let ref c = 0 in

11 let sign = if n >= 0 then 1 else (-1) in

12 while c < n do

13 a <- a + 2*(n - c) - 1;

14 b <- b + 2*c + 2;

15 c <- c + 1

16 done;

17 b-a

18

19 end

Your goal is to modify this function so that it satisfies its contract as-is, without adding a precon-
dition or changing the postcondition.

Task 2 (5 pts). Update the implementation so that it satisfies its contract. You can change the loop
guard, and the right-hand side of assignments that are already in the loop body, but you may not
add new statements, declare new variable bindings, or change the value b-a that is returned by
the function.

Task 3 (5 pts). Change the loop invariants so that the function g verifies. You may change them
however you like, but do not modify the pre and postconditions on g.

Place this function in the file mystery3.mlw.

Note: You should feel free to use the invariants from your assignment 0 as a starting point. On Jan-
uary 30 (i.e., after the late handin deadline), a reference solution to assignment 0 will be released, and you
may also work from the invariants in that solution.

3 Relaxed Requirements (20 pts)

In this problem we ask you to refactor the implementation of integer sets using bitvectors covered
in lecture (and included in bitset.mlw).

Task 4 (20 pts). Modify the contracts on the test function to remove the precondition. The result-
ing contract should look like the following:

1 let test (x : int) (s : bset) : bool =

2 ensures { result <-> Fset.mem x s.model }

3 ensures { s.model == (old s.model) }

Then, change the data structure invariants, and if needed the implementation of test, so that
Why3 is able to verify the Bitset module.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, FEBRUARY 3, 2023
65 PTS



Variations on a Theme HW1.4

Place your implementation in the file bitset.mlw.

4 Differentiate Discretely (25 pts)

Discrete differentiation is an operation that replaces a sequence such as 2, 5, 10, 17, 26 by the differ-
ences between consecutive elements, 3, 5, 7, 9, in this case. Iterating the process once more give us
2, 2, 2. Even though we are not pursuing it in this problem, it is possible to determine a polynomial
representation of the sequence from the iterated finite differences (here: x2 + 2x+ 2).

Task 5 (13 pts). Write a verified function diffs (a : array int) : array int that returns a new
array of differences between the elements of a, starting with a[1]−a[0], a[2]−a[1], etc. Your function
should not modify a itself, i.e. a at the end of the function should be equal to a at the beginning.
The length of the output array should be one less than the length of the input array.

Task 6 (13 pts). Write a verified function diffs_in_place (a : array int) : unit that replaces
each element in the array by the difference to the next one, without allocating a new array. The
last element can be arbitrary.

[Hint: for working with mutable arrays we found the alt-ergo and Z3 provers to be generally
more effective than CVC4. Also, the array.ArrayEq standard library may be helpful for concise
specifications.]

Place your implementations in the file diff.mlw.

Note! Be careful to ensure that your contracts cover ALL of the parts of the functions’ specifi-
cations from the task descriptions.

ASSIGNMENT 1 DUE 23:59PM, FRIDAY, FEBRUARY 3, 2023
65 PTS


	The Fine Print (10 pts)
	Assignment 0, revisited (10 pts)
	Relaxed Requirements (20 pts)
	Differentiate Discretely (25 pts)

