
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Branching-Time Properties

Matt Fredrikson

Carnegie Mellon University
Lecture 21

1 Introduction

Linear temporal logic is a very important logic for model checking [Eme90, CGP99,
BKL08] but has the downside that its verification algorithms are rather complex. Addi-
tionally, the formulas of LTL can only describe a particular type of temporal property
over individual traces, with the assumption that an entire system satisfies an LTL for-
mula if and only if all its traces satisfy the formula. It might be useful in some situations
to describe properties that quantify over possible traces of a system, both universally
and existentially, to account for the fact that computations often branch among many
possible paths during execution.

Today we will discuss Computation Tree Logic (CTL), another temporal logic that is
suited to the goals described above. CTL formulas describe properties that switch to
a new trace every time a temporal operator is used, requiring either the existence of a
satisfying trace, or universal satisfaction among all possible traces, depending on a path
quantifier. CTL has the advantage of having a pretty simple model checking algorithm,
and it describes an incomparable set of properties from LTL.

2 Review

Recall the definition of a computation structure, which is a transition system describing
a set of infinite traces over states labeled with atomic propositions.

Definition 1 (Computation structure). A Kripke structure K = (W,y, v) is called a
computation structure if W is a finite set of states and every element s ∈ W has at least
one direct successor t ∈W with sy t. A (computation) path in a computation structure
is an infinite sequence s0, s1, s2, s3, . . . of states si ∈ W such that si y si+1 for all i. The

http://www.cs.cmu.edu/~15414/index.html

L21.2 Branching-Time Properties

coin
s0

select
s1

coffee
s2

tea
s3

Figure 1: Computation structure describing the operation of a vending machine.

mapping v labels each state with a set of atomic propositions, or basic formulas that are
true in the state.

Figure 1 shows an example of a computation structure for a simple beverage vending
machine. We saw how to use LTL formulas to describe useful properties of computation
structures, so that all of their traces satisfy a given formula (Definitions 3 and 3).

Definition 2 (LTL semantics (traces)). The truth of LTL formulas in a trace σ is defined
inductively as follows:

1. σ |= F iff σ0 |= F for state formula F provided that σ0 6= Λ

2. σ |= ¬P iff σ 6|= P , i.e. it is not the case that σ |= P

3. σ |= P ∧Q iff σ |= P and σ |= Q

4. σ |= XP iff σ1 |= P

5. σ |= �P iff σi |= P for all i ≥ 0

6. σ |= ♦P iff σi |= P for some i ≥ 0

7. σ |= PUQ iff there is an i ≥ 0 such that σi |= Q and σj |= P for all 0 ≤ j < i

In all cases, the truth-value of a formula is, of course, only defined if the respective
suffixes of the traces are defined.

Definition 3 (LTL semantics (computation structure)). Given an LTL formula P and
computation structure K = (W,y, v), K |= P if and only if σ |= P for all σ where
σi = v(si) for some path s0, s1, s2, . . . in K.

15-414 LECTURE NOTES MATT FREDRIKSON

Branching-Time Properties L21.3

3 Computation Tree Logic

We have seen that LTL universally quantifies over paths in a computation. However,
we may also want to quantify existentially over paths, requiring that at least one way
of executing the computation satisfies a given property. CTL incorporates this by intro-
ducing path quantifiers E (existential) and A (universal). Path quantifiers are evaluated
in a particular state of a transition structure, and so we refer to formulas constructed
from them as state formulas.

• EP is a state formula where for a given Kripke structureK we have the following:

K, s |= EP ↔ there exists a path π starting at s where π |= P

• AP is a state formula where for a given Kripke structureK we have the following:

K, s |= AP ↔ for all paths π starting at s, π |= P

The temporal operators for next, future, globally, and until are always paired with a
path quantifier in CTL. It is also conventional to use the letter G in place of � , and
F in place of ♦ , when writing CTL formulas. The semantics of the logic is shown in
Definition 4.

Definition 4. In a fixed computation structureK = (W,y, v), the truth of CTL formulas
in state s is defined inductively as follows:

1. s |= p iff v(s)(p) = true for atomic propositions p

2. s |= ¬P iff s 6|= P , i.e. it is not the case that s |= P

3. s |= P ∧Q iff s |= P and s |= Q

4. s |= AXP iff all successors t with sy t satisfy t |= P

5. s |= EXP iff at least one successor t with sy t satisfies t |= P

6. s |= AGP iff all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P for all i ≥ 0

7. s |= AFP iff all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P for some i ≥ 0

8. s |= EGP iff some path s0, s1, s2, . . . starting in s0 = s satisfies si |= P for all i ≥ 0

9. s |= EFP iff some path s0, s1, s2, . . . starting in s0 = s satisfies si |= P for some
i ≥ 0

10. s |= APUQ iff all paths s0, s1, s2, . . . starting in s0 = s have some i ≥ 0 such that
si |= Q and sj |= P for all 0 ≤ j < i

11. s |= EPUQ iff some path s0, s1, s2, . . . starting in s0 = s has some i ≥ 0 such that
si |= Q and sj |= P for all 0 ≤ j < i

15-414 LECTURE NOTES MATT FREDRIKSON

L21.4 Branching-Time Properties

While LTL formulas describe linear-time properties (single paths), CTL formulas de-
scribe branching-time properties and can describe multiple possible futures. We can
visualize LTL formulas as a sequence of states in a single line where CTL corresponds
to a transition of states in a tree. Figure 2 shows the visualization of the LTL formula
PUQ, whereas Figure 3 shows the visualization of the CTL formula A[PUQ].

3.1 Useful equivalences

Some of the CTL formulas are redundant in the sense that they are definable with other
CTL formulas already. But the meaning of the original formulas is usually much easier
to understand than the meaning of its equivalent.

Lemma 5. The following are valid CTL equivalences:

1. EFP ↔ E[trueUP]

2. AFP ↔ A[trueUP]

3. EGP ↔ ¬AF¬P

4. AGP ↔ ¬EF¬P

5. AXP ↔ ¬EX¬P

6. A[PUQ]↔ ¬E[¬QU(¬P ∧ ¬Q)] ∧ ¬EG¬Q

Most of these cases except the last are quite easy to prove. So as not to confuse our-
selves, we will definitely make use of the finally and globally operators in applications.
But thanks to these equivalences, when developing reasoning techniques we can sim-
ply pretend next and until would be the only temporal operators to worry about. In
fact, we can even pretend only the existential path quantifier E is used, never the uni-
versal path quantifier A, but this reduction in the number of different operators comes
at quite some expense in the size and complexity in the resulting formulas.

3.2 Comparison with LTL

LTL and CTL are incomparable in terms of expressiveness. There are formulas in both
logics that cannot be expressed in the other. Consider the LTL formula ♦�P , which is
satisfied by the automaton in Figure 5. What is the equivalent CTL formula? One idea
is to take the fact that LTL formulas “implicitly” have universal path quantifiers before
every temporal operator, and propose the formula AFAGP . However, this formula
illustrates that the “quantifiers” that our intuition might tell us are implicit in LTL do
not mean the same thing as the semantics of CTL, because this automaton does not
satisfy AFAGP . Note that we can visualize the unrolling of Figure 5 in Figure 6, where
we can see that there is a run in which the system will always be in the state from which
a run finally goes in a non P state. This corresponds to staying in the initial state of

15-414 LECTURE NOTES MATT FREDRIKSON

Branching-Time Properties L21.5

· · · · · ·
P ∧ ¬Q P ∧ ¬Q P ∧ ¬Q Q

Figure 2: Visualization of a LTL formula: PUQ

p

q

...
...

...

p

p

q
...

q
...

q

...
...

Figure 3: Visualization of a CTL formula: A[PUQ]

...
...

...
...

...
...

p
...

Figure 4: Visualization of a CTL formula: EFP

15-414 LECTURE NOTES MATT FREDRIKSON

L21.6 Branching-Time Properties

p q p

Figure 5: An example of an automaton that satisfies ♦�P

p

p

p

p
...

q
...

q

p
...

q

p
...

Figure 6: Unrolling the branches of Figure 5

Figure 5 for arbitrarily long, maintaining the existence of an alternate path in which p
does not hold globally.

An example of a CTL formula that cannot be expressed in LTL is AG(EFP). This
formula states that there is always the possibility that a state can be reached during a
run, even if it is never actually reached. However, the natural corresponding LTL for-
mula �♦P states that at all times, P will eventually be reached. Note that this formula
is stronger than the previous one since we just need the possibility of returning to P .

4 Example: Mutual Exclusion

Temporal logic is particularly helpful to verify properties of distributed systems. For
example, we may want to reason about safety or liveness. Safety properties state that
“nothing bad would ever happen”, whereas liveness properties state that “something
good always happens”. We will how we can encode safety and liveness using CTL for
a mutual exclusion protocol.

The notation in the following transition diagram is nt for: the first process is in the
noncritical section while the second process is trying to get into its critical section.

n noncritical section of an abstract process
t trying to enter critical section of an abstract process
c critical section of an abstract process

Those atomic propositional letters are used with suffix 1 to indicate that they apply to
process 1 and with suffix 2 to indicate process 2. For example the notation nt indicates
a state in which n1 ∧ t2 is true (and no other propositional letters). Consider Kripke
structure

15-414 LECTURE NOTES MATT FREDRIKSON

Branching-Time Properties L21.7

nn
0

tn

1

cn2

ct

4

tt

3

nt

5

tt

6

tc

8

nc

7

1. Safety: ¬EF(c1 ∧ c2) is trivially true since there is no state labelled ccx.

2. Liveness: AG(t1 → AFc1) ∧AG(t2 → AFc2)

References

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of
Model Checking. MIT Press, 2008.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, 1999.

[Eme90] Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pages 995–1072. MIT Press, 1990.

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Review
	Computation Tree Logic
	Useful equivalences
	Comparison with LTL

	Example: Mutual Exclusion

