
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Compositional Reasoning

Matt Fredrikson

Carnegie Mellon University
Lecture 5

1 Introduction

This lecture will focus on developing systematic logical reasoning principles for se-
quential programs. Writing programs with correctness specifications is one thing. But
proving them to be correct is a different matter. Both are exceedingly useful, because
the clear expression of our expectations on a program often already make it more cor-
rect as it will more likely occur to us if our expectations and the program’s realization
are out of sync. But, of course, we might still fail to notice that a program does not meet
its correctness specification if all we do is look at them.

The fact that we unambiguously rendered program contracts in logic now plays to
our advantage. Not only did this make it clear what a precondition and postcondition
of a program really means. But logic also provides ways of reasoning logically (go
figure) about the programs by systematically transforming one logical formula into a
simpler logical formula to find out whether it is true. This will lead us to discover a
very systematic logical way of reasoning about the correctness of sequential programs.
More information on the topic of axioms for reasoning about the behavior of programs
in dynamic logic can also be found in the literature [HKT00, Pla17b].

2 Semantical Considerations on Programs

Recall the dynamic logic formula for the program swapping two variables x and y in
place:

x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a) (1)

Its meaning, and thus the meaning of the program contract that it came from, are now
mathematically defined precisely. What can we do with its mathematical semantics?

http://www.cs.cmu.edu/~15414/index.html

L5.2 Compositional Reasoning

Well, we could, for example, follow the definitions of the semantics to find out how a
specific initial state ω changes as the program is executing. Consider the initial state ω
with ω(x) = 5 and ω(y) = 7. For this state to satisfy the preconditions, it also needs to
have the following values ω(a) = 5 and ω(b) = 7 for variables a and b. Thus,

ω |= x = a ∧ y = b

Since the swap program only changes the variables x and y, we only need to track
their values, since everything else stays unchanged. After running the first assignment
x := x + y, the program reaches state a µ1 with µ1(x) = 12, µ1(y) = 7. After running
the second assignment y := x − y; from state µ1 the program reaches a state µ2 with
µ2(x) = 12, µ2(y) = 5. After running the third assignment x := x− y; from state µ2 the
program reaches a state ν with ν(x) = 7, ν(y) = 5. Let’s write the respective program
statements in the first row and the states in between these in the next rows:

x := x+ y; y := x− y; x := x− y
ω(x) = 5 µ1(x) = 12 µ2(x) = 12 ν(x) = 7
ω(y) = 7 µ1(y) = 7 µ2(y) = 5 ν(y) = 5

All those states agree that a has the value 5 and b the value 7. So indeed, the (only) final
state ν satisfies the postcondition:

ω |= x = b ∧ y = a

Well that’s nice. We followed the semantics of program execution from the particular
initial state ω with ω(x) = 5 and ω(y) = 7 and found out that all its final states (well ν
is the only one) satisfy the postcondition that formula (1) claims. This justifies that (1)
is true in state ω:

ω |= x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

In fact, since we just saw there is a final state ν in which the postcondition is true, this
also justifies the diamond modality case is true in state ω:

ω |= x = a ∧ y = b→ 〈x := x+ y; y := x− y;x := x− y〉(x = b ∧ y = a)

Lovely. Now all we need to do to justify that DL formula (1) is not just true in this
particular initial state ω but is valid in all states, is to consider one state at a time and
follow the semantics to show the same.

The only downside of that approach of following the semantics through concrete
states is that it will keep us busy till the end of the universe because there are infinitely
many different states. Even among those initial states that satisfy the precondition x =
a ∧ y = b (otherwise there is nothing to show for (1) since implications are true if their
left hand sides are false), there are still infinitely many such states. That’s not very
practical for such a simple program nor, in fact, for any other interesting program with
input.

15-414 LECTURE NOTES MATT FREDRIKSON

Compositional Reasoning L5.3

3 Axioms for Programs

Our approach to understanding programs with logic is to design one reasoning princ-
ple for each program operator that describes its effect in logic with simpler logical op-
erators. If we succeed doing that for every operator that a program can have, then we
will understand even the most complicated programs just by repeatedly making use of
the respective logical reasoning principles.

3.1 Assignments

The first case we look into is assignment, where we want to prove the validity of formu-
las like [x := e]p(x), which expresses that the formula p(x) holds after the assignment
x := e that assigns the value of term e to variable x. How could we reduce this to an-
other logical formula that is simpler?

If we want to show that the formula p(x) holds after assigning the new value e to
variable x then we might as well show p(e) right away. And, in fact, p is true of x
after assigning e to x if and only if p is true of its new value e. That is, the formula
[x := e]p(x) is equivalent to the formula p(e). We capture this argument once and for all
in the assignment axiom [:=]:

([:=]) [x := e]p(x)↔ p(e)

In the assignment axiom [:=], the formula p(e) has the term e everywhere in place of
where the formula p(x) has the variable x. Of course, it is important for this substitu-
tion of e for x to avoid capture of variables and not make any replacements under the
scope of a quantifier or modality binding an affected variable [Pla17a]. For example,
the following formula is an instance of [:=]:

[x := x2 − 1]x(x+ 1) ≥ x+ y ↔ (x2 − 1)(x2 − 1 + 1) ≥ (x2 − 1) + y

But the following is not because it would capture the replacement y that is used for x:

[x := y](x ≥ 0 ∧ ∀y (x ≥ y))↔ (y ≥ 0 ∧ ∀y (y ≥ y))

Instead, if we first rename ∀y to ∀z then the substitution works:

[x := y](x ≥ 0 ∧ ∀z (x ≥ z))↔ (y ≥ 0 ∧ ∀z (y ≥ z))

Used correctly, this axiom is clearly convenient as it allows us to remove a box modal-
ity from a formula, and in some cases reduce our reasoning to questions of pure first-
order arithmetic. We might imagine that this takes us closer to a proof, but we might
still need to make use of other axioms depending on what p is. But observe how nicely
the [:=] axiom allows us to reduce a proof of an assignment program to that of an-
other formula after making some straightforward syntactic substitutions. We will try
to identify similar axioms that reduce a property of a composed program to a logical
combination of properties of subprograms also for all the other statements in a pro-
gram. That way we will obtain a compositional reasoning technique that reduces the

15-414 LECTURE NOTES MATT FREDRIKSON

L5.4 Compositional Reasoning

correctness of any arbitrary big program to a number of questions about smaller and
smaller subprograms, of which there are only finitely many.

Before moving on, we want to be sure that this new axiom sound, so we should pause
at this point and consider how to assure ourselves that it is so. When we proved the
soundness of proof rules for the propositional logic, we reasoned that the validity of
the premises logically implies the validity of the conclusions. There are no premises in
[:=], just an assertion that a formula containing an assignment in a box is equivalent to
another formula with some substitutions replacing variables with terms. To be abso-
lutely sure that treating these two formulas as equivalent is the right thing to do, we
must show that the formula [x := e]p(x) ↔ p(e) is valid. We begin with a lemma that
will help us reason about the substitutions that we made to obtain p(e) by substituting
x in p(x) with e.

Lemma 1. Let p be a formula, e be a term, and ω, ν be states. If ω = ν except that ν(x) = ωJeK,
then ω |= p(e) if and only if ν |= p(x).

Proof. We begin by introducing a notation for substitution of variables in terms. If ẽ is a
term containing one or more instances of variable x, then ẽe

′
x is the corresponding term

given by replacing all instances of x in ẽ with e′. More precisely,

ce
′
x = c

xe
′
x = e′

ye
′

x = y

(e1 + e2)
e′
x = e1

e′
x + e2

e′
x

(e1 × e2)e
′
x = e1

e′
x × e2e

′
x

Note that there are two cases for variables, one where the variable is the target of the
substitution x, and another denoting the remaining cases where the variable is not the
same one being substituted (i.e., y).

Then we note that given ω and ν as defined in the lemma statement, for any term ẽ,
ωJẽexK = νJẽK. We have this by induction on the structure of ẽ.

• Case c: We have that ωJcexK = c = νJcK.

• Case x: In this case, ωJxexK = ωJeK. By assumption, ν(x) = ωJeK, so νJxK = ωJeK.

• Case y: Here ωJyexK = ω(y) = ν(y) = νJyK, with the middle equality following
from the assumption of the lemma that ω = ν everywhere except at x.

• Case e1 + e2: This is the inductive case. So we assume that ωJe1exK = νJe1K and
ωJe2exK = νJe2K. Then ωJ(e1+e2)exK = ωJe1exK+ωJe2exK = νJe1K+νJe2K = νJe1+e2K.

We conclude this observation by noting that the case for multiplication uses identical
reasoning as the one for addition.

With this property about the equivalence of substitutions for terms in hand, we can
prove the lemma itself by induction on the structure of the formula p. This is left as

15-414 LECTURE NOTES MATT FREDRIKSON

Compositional Reasoning L5.5

an exercise, but we note that while it may seem straightforward when considering the
base cases (e = ẽ, e ≤ ẽ) and formulas without quantifiers and modalities that bind
variables, care must be taken to rigorously account for variable capture when extending
substitution to all formulas. See [Pla17a] for a full treatment of this matter.

Theorem 2. The assignment axiom [:=] is sound, i.e., all its instances are valid. For any DL
formula p,

|= [x := e]p(x)↔ p(e)

Proof. Recall the semantics of assignment:

Jx := eK = {(ω, ν) : ω = ν except that ν(x) = ωJeK} (2)

To show that the formula [x := e]p(x) ↔ p(e) is valid, consider any state ω and show
that ω |= [x := e]p(x)↔ p(e). We will use the semantics of assignment to in turn reason
about the semantics of [x := e]p(x) as we proceed. The proof is in two parts, one for
each direction of the biimplication.

“←” Here we assume the right hand side, i.e., ω |= p(e), and show that ω |= [x := e]p(x).
Because ω |= p(e) by our assumption, the substitution lemma (Lemma 1) gives us
that ν |= p(x) for all ν where ω = ν except that ν(x) = ωJeK. By the semantics of
the box modality [·], we know that ω |= [x := e]p(x) if and only if for all ν where
(ω, ν) ∈ Jx := eK, ν |= p(x). By the semantics of assignment given in (2), we know
that any ν where (ω, ν) ∈ Jx := eK is identical to ω everywhere except at x, where
ν maps x to the value of e in ω, i.e. ν(x) = ωJeK. Therefore, we conclude that
ω |= [x := e]p(x).

“→” Now we assume the left hand side, i.e., ω |= [x := e]p(x), and show that ω |= p(e).
Reasoning as we did in the case of the opposite direction, by the semantics of
the box modality, this assumption gives us that ν |= p(x) for all ν where (ω, ν) ∈
Jx := eK. Applying the semantics of assignment, we can make this more precise
to conclude that ν |= p(x) for all ν where ω = ν except that ν(x) = ωJeK. Again
applying Lemma 1, we arrive at the desired result ω |= p(e).

3.2 Conditionals

The next case we look at is what is needed to prove in order to show the formula
[if(Q)α elseβ]P , which expresses that formula P always holds after running the if-
then-else conditional if(Q)α elseβ that runs program α if formula Q is true and runs
β otherwise. In order to understand it from a logical perspective, how could we express
[if(Q)α elseβ]P in easier ways?

If Q holds then [if(Q)α elseβ]P says that P always holds after running α. If Q does
not hold then the same formula [if(Q)α elseβ]P says that P always holds after run-
ning β. It is easy to say with a logical formula that P always holds after running α,

15-414 LECTURE NOTES MATT FREDRIKSON

L5.6 Compositional Reasoning

which is precisely what [α]P is good for. Likewise [β]P directly expresses in logic that
P always holds after running β. Both of those formulas [α]P as well as [β]P are simpler
than the original formula [if(Q)α elseβ]P . But, of course, they express something
else, because the program if(Q)α elseβ only runs the respective programs condition-
ally depending on the truth-value of Q.

Yet, there still is a way of expressing [if(Q)α elseβ]P in logic in easier ways with
the help of other logical operators. Implications are perfect at expressing the condi-
tions that an if-then statement states in a program. Indeed, if Q holds then [α]P needs
to be true and if Q does not hold then [β]P for [if(Q)α elseβ]P to hold. Indeed,
[if(Q)α elseβ]P is true if and only if (Q→ [α]P) ∧ (¬Q→ [β]P) is true. We capture
this argument once and for all in the if-then-else axiom [if]:

([if]) [if(Q)α elseβ]P ↔ (Q→ [α]P) ∧ (¬Q→ [β]P)

Just like with the assignment axiom [:=], every time we want to make use of this
equivalence, we just refer to it by name: [if]. When using the equivalence [if] from left
to right, we can use it to simplify every question about an if-then-else statement of the
form [if(Q)α elseβ]P by a corresponding structurally simpler formula

(Q→ [α]P) ∧ (¬Q→ [β]P)

that does not use the if-then-else statement any more but is logically equivalent. Whether
the right hand side of axiom [if] is really seriously simpler than its left hand side needs
a moment’s thought because it is longer. But the point is that, even if it may be tex-
tually longer, the right hand side is structurally simpler, because it does not use the
if-then-else statement anymore but subprograms and simpler logical operators.

The axiom will enable us, for example to conclude this equivalence:

[if(x≥0) y := x else y :=−x]y=|x| ↔ (x≥0→ [y := x]y=|x|) ∧ (¬x≥0→ [y :=−x]y=|x|)

This formula uses |x| as notation for the absolute value of x.
Also, since axiom [if] justifies this equivalence, we will be able to reduce a question

about whether its left hand side is valid with axiom [if] to the question whether its
corresponding right hand side is valid. In sequent calculus proofs, we will, thus, mark
the use of such an axiom by giving its name [if]:

` (x≥0→ [y := x]y=|x|) ∧ (¬x≥0→ [y :=−x]y=|x|)
[if] ` [if(x≥0) y := x else y :=−x]y=|x|

Almost always will we take care to only use axioms for reducing its left hand side to the
structurally simpler right hand side in order to make sure the proof makes progress to-
ward simpler formulas. Since we already know an axiom for dealing with assignments,

15-414 LECTURE NOTES MATT FREDRIKSON

Compositional Reasoning L5.7

let’s finish this proof.

∗
Z x≥0 ` x=|x|

[:=]x≥0 ` [y := x] y=|x|
→R ` x≥0→ [y := x] y=|x|

∗
Z ` x≥0,−x=|x|
¬L¬x≥0 ` −x=|x|
[:=]¬x≥0 ` [y :=−x] y=|x|
→R ` ¬x≥0→ [y :=−x] y=|x|

∧R ` (x≥0→ [y := x] y=|x|) ∧ (¬x≥0→ [y :=−x] y=|x|)
[if] ` [if(x≥0) y := x else y :=−x] y=|x|

Verification Conditions This proof shows validity of the following formula, which
says that the given program correctly implements the absolute value function |·| from
mathematics:

[if(x≥0) y := x else y :=−x] y=|x|

The proof refers to propositional logic sequent calculus rules such as ∧R and →R as
well as the dynamic logic axioms [if] and [:=].

The proof is developed starting with the desired conclusion at the bottom and work-
ing with proof rules to the top as usual in sequent calculus. But notice that we ended
with an application of a new rule Z once we had gotten to a point where the left and
right sides of the sequent contained no logical operators, and only facts of arithmetic.
On the left branch of the proof, we applied this rule to:

x ≥ 0 ` x = |x|

and on the right to:
` x ≥ 0,−x = |x|

These sequents correspond to assertions about integer arithmetic, namely that x ≥ 0→
x = |x|, and x ≥ 0 ∨ −x = |x|. We refer to such formulas as verification conditions, as in
order to verify that the original DL formula is valid, we must first establish that these
arithmetic conditions are valid.

This is not a course about proving facts of arithmetic, so we will leave this work to
the Z rule if we are certain that the verification conditions are valid, as we are in this
example from our knowledge of the absolute value function. It is always good form
when writing proofs to make a note of why you believe that each verification condition
is valid.

In practice, this work is left to one or more decision procedures [KS16], which are al-
gorithms for deciding the validity (or equivalently, satsfiability) of formulas containing
arithmetic and possibly operators from other domains, like lists and arrays. Later in the
semester, we will return to decision procedures and learn more about how they work,
but for now, you should satisfy yourself with simply applying Z once there are no more
logical deduction rules or axioms to apply.

15-414 LECTURE NOTES MATT FREDRIKSON

L5.8 Compositional Reasoning

3.3 Test

The if-then-else statement branches execution of the program depending on the truth-
value of its condition in the current state. The test statement ?Q also checks a condition
on the current state. The difference is that it has no effect on the state if Q is indeed
true, but aborts and discards the execution if Q is not true. How can we express [?Q]P
in logic in structurally simpler ways? In fact, let’s preferably express [?Q]P equivalently
in simpler ways, because that equivalence principle worked so well in axiom [if].

The formula [?Q]P is true iff formula P holds always after running the test ?Q, which
can only run if Q is true. What happens if the test program ?Q cannot run because Q is
false? Well in that case nothing needs to be shown, because [?Q]P merely expresses that
P holds after all runs of the program ?Q, which is vacuously true for any postcondition
if there simply isn’t a run of ?Q at all because Q is false in the current state.

Consequently P holds after all runs of the program ?Q iff postcondition P is true if
the test Q is. That is iff the test formula Q implies the postcondition P . This is captured
in the test axiom [?]:

([?]) [?Q]P ↔ (Q→ P)

3.4 Sequential Compositions

The axioms we investigated so far already handle some programs, but sequential com-
positions are missing quite noticeably and we won’t get very far in programs without
them. So how can we equivalently express [α;β]P in simpler logic without sequential
compositions? This formula expresses that P holds after all runs of α;β, which first
runs α and then runs β. How can this be expressed in an easier way in logic, again
using just the subprograms α as well as β of α;β then?

In order to express [α;β]P what we need to say is that after all runs of α it is the case
that P holds after all runs of β. It is comparably easy to say that P holds after all runs
of β just with the formula [β]P . But where does this formula need to hold? After all
runs of α. In particular, all we need to say is that [β]P holds after all runs of α, which
is exactly what the formula [α][β]P says. We capture these insights in the sequential
composition axiom [;]:

([;]) [α;β]P ↔ [α][β]P

Indeed, after all runs of α;β does P hold if and only if after all runs of α it is the case
that after all runs of β does P hold.

Theorem 3. The sequential composition axiom [;] is sound, i.e. all its instances are valid:

([;]) [α;β]P ↔ [α][β]P

Proof. Recall the semantics of sequential composition:

[[α;β]] = [[α]] ◦ [[β]] = {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]}

In order to show that the formula [α;β]P ↔ [α][β]P is valid, i.e. � [α;β]P ↔ [α][β]P ,
consider any state ω and show that ω |= [α;β]P ↔ [α][β]P . We prove this biimplication
by separately proving both implications.

15-414 LECTURE NOTES MATT FREDRIKSON

Compositional Reasoning L5.9

“←” Assume the right hand side ω |= [α][β]P and show ω |= [α;β]P . To show the lat-
ter, consider any state ν with (ω, ν) ∈ [[α;β]] and show that ν |= P . By the seman-
tics of sequential composition, (ω, ν) ∈ [[α;β]] implies that there is a state µ such
that (ω, µ) ∈ [[α]] and (µ, ν) ∈ [[β]]. The assumption implies with (ω, µ) ∈ [[α]] that
µ |= [β]P . This, in turn, implies with (µ, ν) ∈ [[β]] that ν |= P as desired.

“→” Conversely, assume the left hand side ω |= [α;β]P and show ω |= [α][β]P . To
show ω |= [α][β]P , consider any state µ with (ω, µ) ∈ [[α]] and show µ |= [β]P .
To show the latter, consider any state ν with with (µ, ν) ∈ [[β]] and show ν |= P .
Now (ω, µ) ∈ [[α]] and (µ, ν) ∈ [[β]] imply (ω, ν) ∈ [[α;β]] by the semantics of se-
quential composition. Consequently, the assumption ω |= [α;β]P implies ν |= P
as desired.

These axioms already enable us to prove the correctness of the integer-based swap-
ping function

x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

All we need to do is turn it into a sequent and start with this as the desired conclusion at
the bottom of a sequent proof and successively apply axioms until the proof completes:

∗
Z x=a ∧ y=b ` y = b ∧ x = a
x=a ∧ y=b ` x+ y − (x+ y − y) = b ∧ x+ y − y = a

[:=]x=a ∧ y=b ` [x := x+ y](x− (x− y) = b ∧ x− y = a)
[:=]x=a ∧ y=b ` [x := x+ y][y := x− y](x− y = b ∧ y = a)
[:=]x=a ∧ y=b ` [x := x+ y][y := x− y][x := x− y](x = b ∧ y = a)
[;] x=a ∧ y=b ` [x := x+ y][y := x− y;x := x− y](x = b ∧ y = a)
[;] x=a ∧ y=b ` [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)
→R ` x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

Remember how we mark the use of arithmetic reasoning as Z. Note how this is now
a proof of correctness of the swap program from (1) that, in a finite amount of work,
justifies correctness for all states and, thus, implies its validity:

� x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

The above sequent calculus proof used the assignment axiom inside out, so starting
with handling the last assignment first. It would also have been possible to start outside
in handling the first assignment first. That would have led to the following proof step:

. . .
[:=]x=a ∧ y=b ` [y := x+ y − y][x := x+ y − y](x = b ∧ y = a)
[:=]x=a ∧ y=b ` [x := x+ y][y := x− y][x := x− y](x = b ∧ y = a)
[;] x=a ∧ y=b ` [x := x+ y][y := x− y;x := x− y](x = b ∧ y = a)
[;] x=a ∧ y=b ` [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)
→R ` x = a ∧ y = b→ [x := x+ y; y := x− y;x := x− y](x = b ∧ y = a)

15-414 LECTURE NOTES MATT FREDRIKSON

L5.10 Compositional Reasoning

([:=]) [x := e]p(x)↔ p(e)

([?]) [?Q]P ↔ (Q→ P)

([if]) [if(Q)α elseβ]P ↔ (Q→ [α]P) ∧ (¬Q→ [β]P)

([;]) [α;β]P ↔ [α][β]P

([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Figure 1: Axioms of the day

3.5 Loop the Loop

The final and most difficult case is that of the loop. How can we prove [while(Q)α]P in
another way by rephrasing it equivalently in logic? What the loop while(Q)α does is
to test whether formula Q is true and, if so, run α, and then repeating that process until
Q is false (if it ever is, otherwise the loop just keeps running α until the end of time).

Let’s try to understand that by cases. If Q holds then [while(Q)α]P runs α and then
runs the while loop afterwards yet again. If Q does not hold then the loop has no effect
and just stops right away. That is why while(Q)α is equivalent to if(Q) {α; while(Q)α},
because both have no effect ifQ is false but repeat α as long asQ is true. We can capture
these thoughts in the following axiom:

([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

By applying the [if] axiom and the composition axiom [;] on the right hand side of axiom
[unwind], we obtain the following minor variation of axiom [unwind] which we call
[unfold]. But on paper we might just as well accept either name, because both axioms
follow essentially the same idea and one can easily tell which one we refer to:

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P) ∧ (¬Q→ P)

Both the unwinding axiom [unwind] and the closely related unfolding axiom [unfold]
have a slight deficiency that we will get back to. Can you spot it already?

References

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,
2000.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic
Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2016.

15-414 LECTURE NOTES MATT FREDRIKSON

Compositional Reasoning L5.11

[Pla17a] André Platzer. A complete uniform substitution calculus for differen-
tial dynamic logic. J. Autom. Reas., 59(2):219–265, 2017. doi:10.1007/

s10817-016-9385-1.
[Pla17b] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Switzer-

land, 2017. URL: http://www.springer.com/978-3-319-63587-3.

15-414 LECTURE NOTES MATT FREDRIKSON

http://dx.doi.org/10.1007/s10817-016-9385-1
http://dx.doi.org/10.1007/s10817-016-9385-1
http://www.springer.com/978-3-319-63587-3

	Introduction
	Semantical Considerations on Programs
	Axioms for Programs
	Assignments
	Conditionals
	Test
	Sequential Compositions
	Loop the Loop

