
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Solving SAT with DPLL

Ruben Martins

Carnegie Mellon University
Lecture 16

Tuesday, March 19, 2024

1 Introduction

In this lecture we will switch gears a bit from proving logical theorems “by hand”,
to algorithmic techniques for proving them automatically. Such algorithms are called
decision procedures, because given a formula in some logic they attempt to decide
their validity after a finite amount of computation.

Until now, we have gradually built up from proving properties about formulas in
propositional logic, to doing so for first-order dynamic logic. As we begin discussing
decision procedures, we will return to propositional logic so that the techniques applied
by these algorithms can be more clearly understood. Decision procedures for proposi-
tional logic are often referred to as SAT solvers, as they work by exploiting the relation-
ship between validity and satisfiability, and directly solve the latter problem. Later on,
we will see that these same techniques underpin decision procedures for richer logics,
and are able to automatically prove properties about programs.

Learning Goals.

After this lecture, you should learn that:

• Decision procedure is an algorithm that, given a decision problem, terminates
with a correct yes/no answer. In this lecture we present a decision procedure for
propositional logic, (aka, a SAT solver).

• Local, incomplete and complete, but potentially expensive, algorithms for decid-
ing this problem.

http://www.cs.cmu.edu/~15414/

L16.2 Solving SAT with DPLL

• Boolean constraint propagation (BCP) (also known as unit propagation), a pow-
erful way of pruning the search space traversed by the DPLL procedure.

• Learning additional clauses from conflicts encountered during search, by apply-
ing the resolution principle from the previous lecture, can further prune the search
space.

2 Review: Propositional Logic

We’ll focus on automating the decision problem for Boolean satisfiability. Let’s start by
refreshing ourselves on the fundamentals of propositional logic. The formulas F,G of
propositional logic are defined by the following grammar (where p is an atomic propo-
sition, or atom):

F ::= ⊤ | ⊥ | p | ¬F | F ∧G | F ∨G | F → G | F ↔ G

When it comes to the semantics, recall that the meaning of formulas is given by an
interpretation I that gives the truth value for each atom. Given an interpretation, we
can assign values to formulas constructed using the logical operators.

Definition 1 (Semantics of propositional logic). The propositional formula F is true in
interpretation ω, written I |= F , as inductively defined by distinguishing the shape of
formula F :

1. I |= ⊤ for all interpretations I .

2. I ̸|= ⊥ for all interpretations I .

3. I |= p iff I(p) = true for atoms p.

4. I |= F ∧G iff I |= F and I |= G.

5. I |= F ∨G iff I |= F or I |= G.

6. I |= ¬F iff I ̸|= F .

7. I |= F → G iff I ̸|= F or I |= G.

Our notation for interpretations is essentially a list of all atoms that are true . So, the
interpretation:

I = {p, q}

assigns the value true to p and q, and false to all others. For example, the formula
in Equation 1 below would evaluate to false under I , because I(p) = true, I(q) =
true, I(r) = false so I |= p ∧ q and I ̸|= p ∧ q → r.

(p ∧ q → r) ∧ (p → q) → (p → r) (1)

We use some additional terminology to refer to formulas that evaluate to ⊤ under some
or all possible interpretations.

15-414 LECTURE NOTES RUBEN MARTINS

Solving SAT with DPLL L16.3

Definition 2 (Validity and Satisfiability). A formula F is called valid iff it is true in all
interpretations, i.e. I |= F for all interpretations I . Because any interpretation makes
valid formulas true, we also write ⊨ F iff formula F is valid. A formula F is called
satisfiable iff there is an interpretation ω in which it is true, i.e. I |= F . Otherwise it is
called unsatisfiable.

Satisfiability and validity are duals of each other. That is, a formula F is valid if and
only if ¬F is unsatisfiable.

F is valid ↔ ¬F is unsatisfiable (2)

Importantly, this means that we can decide whether a formula is valid by reasoning
about the satisfiability of its negation. A proof of validity for F from the unsatisfiability
of ¬F is called a refutation. Most efficient decision procedures use this approach, and
therefore attempt to directly prove the satisfiability of a given formula. These tools are
called SAT solvers, referring to the propositional SAT problem. If a SAT solver finds no
satisfying interpretation for F , then we can conclude that ¬F is valid.

3 (Mostly) Review: Conjunctive Normal Form

To simplify logic operations, most SAT procedures require that formulas be provided
in a normal form.

Basic Identities. When a formula contains the constants ⊤ and ⊥, a number of sim-
plifications follow directly from the semantics of propositional logic. We will ignore
the implication operator, as it can be rewritten in terms of negation and disjunction.
For negation, conjunction, and disjunction, we can use the following equivalences to
rewrite formulas containing constants in simpler terms:

¬⊤ ↔ ⊥ ↔ p ∧ ⊥ (3)
¬⊥ ↔ ⊤ ↔ p ∨ ⊤ (4)
p ∨ ⊥ ↔ p ↔ p ∧ ⊤ (5)

(6)

Repeatedly applying these simplifications to a formula containing only constants will
eventually lead to either ⊤ or ⊥. However, practical SAT solvers use additional strate-
gies to further reduce the space of interpretations that need to be considered by the
decision procedure.

Conjunctive Normal Form The common form for current SAT procedures is called
conjunctive normal form (CNF).

15-414 LECTURE NOTES RUBEN MARTINS

L16.4 Solving SAT with DPLL

Definition 3 (Conjunctive Normal Form (CNF)). A formula F is in conjunctive normal
form if it is a conjunction of disjunctions of literals, i.e., it has the form:

∧
i

∨
j

lij

where lij is the jth literal in the ith clause of F .

Every formula can be converted into CNF using basic identities like De Morgan’s
law, but this may cause the size of the formula to increase exponentially. However, it
is possible to transform any propositional formula into an equisatisfiable one in linear
time. Two formulas F and G are equisatisfiable when F is satisfiable if and only if G is
as well. Details of such transformation will be covered in the next lecture.

Definition 4 (Status of a clause under partial interpretation). Given a partial interpre-
tation I , a clause is:

• Satisfied, if one or more of its literals is satisfied

• Conflicting, if all of its literals are assigned but not satisfied

• Unit, if it is not satisfied and all but one of its literals are assigned

• Unresolved, otherwise

For example, given the partial interpretation I = {p1,¬p2, p4}:

(p1 ∨ p3 ∨ ¬p4) is satisfied

(¬p1 ∨ p2) is conflicting

(p2 ∨ ¬p4 ∨ p3) is unit

(¬p1 ∨ p3 ∨ p5) is unresolved

4 A Simple Incomplete Procedure

A simple approach to try to find a satisfiable interpretation to a propositional formula
F can be achieved with a simple guess and check procedure:

1. Create an initial interpretation I by randomly assigning true or false to each atom

2. Check if interpretation I satisfies all clauses of F :

• Yes. Terminate and return I as an interpretation that satisfies formula F .

• No. Choose a clause c that is unsatisfied by the current interpretation:

15-414 LECTURE NOTES RUBEN MARTINS

Solving SAT with DPLL L16.5

– Choose a literal l in c and flip its assignment in the interpretation. This
will guarantee that the clause c becomes satisfied. Goto step 2 and con-
tinue until a satisfiable interpretation I is found.

This procedure is known as local search for SAT and be described in the function
local sat below.

1 let local_sat (f: formula) (itn: int) : option bool =

2 let ref a = init_assignment f.n in

3 let ref i = 0 in

4 let ref res = None in

5 while is_none res && i < itn do

6 let c = get_unsatisfiable_clause f a in

7 if is_none c then res <- Some True

8 else a <- new_assignment a c ;

9 i <- i + 1

10 done ;

11 res

Where the helper functions behave as outlined below:

• init assignment: create an initial interpretation that assigns either true or false to
each atom.

• get unsatisfible clause: returns a clause that is unsatisfied by the current in-
terpretation

• new assignment: updates the interpretation by flipping the truth value of one of
the literals in the unsatisfied clause

Since this approach does not guarantee termination, it is usually the case that this
procedure is limited to a bound number of iterations itn. If when reaching the max-
imum number of iterations a satisfiable interpretation is not found, the algorithm re-
turns None. In this latter case, we do not know if there exists an interpretation that
satisfies the formula F or if the formula F is unsatisfiable.

You can try this approach yourself by playing “The SAT Game“ as we did during the
lecture at http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php?lang=
eng. Can you find a satisfiable interpretation for the easy problems? What about the too
hard problems? In the next section, we will describe a simple complete procedure to
solve SAT in a more systematic way that is guaranteed to either find a satisfiable inter-
pretation or prove that no interpretation exists and that the formula is unsatisfiable.

5 A Simple Complete Procedure

Conceptually, SAT is not a difficult problem to solve with a complete procedure. Each
atom in the formula corresponds to a binary choice, and there are a finite number of
them to deal with. Recall from the second lecture how we used truth tables to determine
the validity of a formula:

15-414 LECTURE NOTES RUBEN MARTINS

http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php?lang=eng
http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php?lang=eng

L16.6 Solving SAT with DPLL

1. Enumerate all possible interpretations of the atoms in F .

2. Continue evaluating all subformulas until the formula is a Boolean constant.

3. F is valid iff it is true under all interpretations.

We can modify this procedure to decide satisfiability in the natural way.

1. Enumerate all possible assignments of the atoms in F .

2. Continue evaluating all subformulas until the formula is a Boolean constant.

3. F is satisfiable iff it is true under at least one interpretation.

Implementing this procedure is fairly straightforward. The only part that might be
tricky is enumerating the valuations, making sure that i) we don’t miss any, and ii) we
don’t enumerate any of them more than necessary, potentially leading to nontermina-
tion.

One natural way to do this is to use recursion, letting the stack implicitly keep track
of which valuations have already been tried. We will rely on two helper functions to do
this, which are outlined informally below.

• choose atom: formula -> atom. This function takes a formula argument and
returns an arbitrary atom appearing in it.

• subst: formula -> atom -> bool -> formula. Takes a formula, and atom
appearing in the formula, and a Boolean value, and returns a new formula with
all instances of the atom replaced by the Boolean value. It also simplifies it as
much as possible, attempting to reduce the formula to a constant.

The function sat is given below. At each recursive step, the function begins by com-
paring the formula to the constants true and false, as a final decision can be made
immediately in either case. Otherwise, it proceeds by selecting an arbitrary atom p

from F, and creating two new formulas Ft and Ff by substituting true and false, re-
spectively, and simplifying them as much as possible so that if there are no unassigned
atoms in the formula then they are reduced to the appropriate constant. sat then makes
two recursive calls on Ft and Ff, and if either return true then sat does as well.

1 let rec sat (f: formula) : bool =

2 if isTrue f then true

3 else if isFalse f then false

4 else begin

5 let p = choose_atom f in

6 let ft = (subst f p true) in

7 let ff = (subst f p false) in

8 sat ft || sat ff

9 end

Intuitively, we can think of this approach as exhaustive case splitting. The procedure
chooses an atom p, splits it into cases p and ¬p, and recursively applies itself to the

15-414 LECTURE NOTES RUBEN MARTINS

Solving SAT with DPLL L16.7

cases. If either is satisfiable, then the original is as well. We know this will terminate
because each split eliminates an atom, and there are only a finite number of atoms in a
formula.

We now have a basic SAT solver. We know that SAT is a hard problem, and more
precisely that it is NP-Complete, and a bit of thought about this code should convince
that this solver will experience the worst-case runtime of 2n much of the time. There is
a chance that we might get lucky and conclude that the formula is satisfiable early, but
certainly for unsatisfiable formulas sat won’t terminate until it has exhausted all of the
possible variable assignments. Can we be more clever than this?

6 Unit Propagation

Consider the following CNF formula:

(p1 ∨ ¬p3 ∨ ¬p5)︸ ︷︷ ︸
C1

∧ (¬p1 ∨ p2)︸ ︷︷ ︸
C2

∧ (¬p1 ∨ ¬p3 ∨ p4)︸ ︷︷ ︸
C3

∧ (¬p1 ∨ ¬p2 ∨ p3)︸ ︷︷ ︸
C5

∧ (¬p4 ∨ ¬p2)︸ ︷︷ ︸
C6

(7)

Suppose that sat begins by choosing to assign p1 to true . This leaves us with:

(p1 ∨ ¬p3 ∨ ¬p5) ∧ (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔ (⊤ ∨ ¬p3 ∨ ¬p5) ∧ (⊥ ∨ p2) ∧ (⊥ ∨ ¬p3 ∨ p4) ∧ (⊥ ∨ ¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔⊤∧ p2 ∧ (¬p3 ∨ p4) ∧ (¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)
↔ p2 ∧ (¬p3 ∨ p4) ∧ (¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)

Notice the clause C2, which was originally ¬p1 ∨ p2, is now simply p2. It is obvious that
any satisfying interpretation must assign p2 true , so there is really no choice to make
given this formula. We say that p2 is a unit literal, which simply means that it occurs in
a clause with no other literals.

We can immediately set p2 to the value that satisfies its literal, and apply equivalences
to remove constants from the formula.

⊤ ∧ (¬p3 ∨ p4) ∧ (¬⊤ ∨ p3) ∧ (¬p4 ∨ ¬⊤)

↔ (¬p3 ∨ p4) ∧ (⊥ ∨ p3) ∧ (¬p4 ∨ ⊥)

↔ (¬p3 ∨ p4) ∧ p3 ∧ ¬p4

After simplifying, we again have two unit literals p3 and ¬p4. We can continue by
picking p3, assigning it a satisfying value, and simplifying.

(¬⊤ ∨ p4) ∧ ⊤ ∧ ¬p4
↔ (⊥ ∨ p4) ∧ ¬p4
↔ p4 ∧ ¬p4

Now all clauses are unit, and it is clear that if we assign p1 to true then resulting formula
is not satisfiable. Notice that once we assigned p1 to true , we were able to determine

15-414 LECTURE NOTES RUBEN MARTINS

L16.8 Solving SAT with DPLL

that the resulting formula was unsatisfiable without making any further decisions. All
of the resulting simplifications were a logical consequence of this original choice. The
process of carrying this to its conclusion is called Boolean constraint propagation (BCP),
or sometimes unit propagation for short.

7 DPLL

BCP allowed us to conclude that the remaining formula, which originally had five vari-
ables, was unsatisfiable with just one recursive call instead of the 25 that would have
been necessary in our original naive implementation. This is a big improvement! Let’s
add it to our decision procedure and have a look at the consequences.

The natural place to insert this optimization is at the beginning of the procedure, be-
fore F is further inspected and any choices are made. This will ensure that if we are
given a formula that is already reducible to a constant through BCP, then we won’t do
any unnecessary work by deciding values that don’t matter. The resulting procedure
is called the David-Putnam-Loveland-Logemann or DPLL procedure, as it was intro-
duced by Martin Davis, Hilary Putnam, George Logemann, and Donald Loveland in
the 1960s [DP60, DLL62].

1 let rec dpll (f: formula) : bool =

2 let fp = bcp f in

3 match fp with

4 | Some True -> true

5 | Some False -> false

6 | None ->

7 begin

8 let p = choose_var f in

9 let ft = (subst_var f p true) in

10 let ff = (subst_var f p false) in

11 dpll ft || dpll ff

12 end

13 end

Remarkably, although DPLL was introduced over 50 years ago, it still forms the basis
of most modern SAT solvers. Much has changed since the 1960’s, however, and the
scale of SAT problems that are used in practice has increased dramatically. It is not
uncommon to encounter instances with millions of atomic propositions and hundreds
of thousands of clauses, and in practice it is often feasible to solve such instances.

Using an implementation that resembles the one above for such problems would not
yield good results in practice. One immediate problem is that the formula is copied
multiple times and mutated in-place with each recursive call. While this makes it easy
to keep track of which variables have already been assigned or implied via propagation,
even through backtracking, it is extremely slow and cumbersome.

Modern solvers address this by using imperative loops rather than recursive calls,
and mutating an interpretation rather than the formula itself. The interpretation re-
mains partial throughout most of the execution, which means that parts of the formula
cannot be evaluated fully to a constant, but are instead unresolved.

15-414 LECTURE NOTES RUBEN MARTINS

Solving SAT with DPLL L16.9

As we discussed earlier, when a clause C is unit under partial interpretation I , I must
be extended so that C’s unassigned literal ℓ is satisfied. There is no need to backtrack
on ℓ before the assignments in I that made C unit have already changed, because ℓ’s
value was implied by those assignments. Rather, backtracking can safely proceed to
the most recent decision, erasing any assignments that arose from unit propagation in
the meantime. Implementing this backtracking optimization correctly is essential to an
efficient SAT solver, as it is what allows DPLL to avoid explicitly enumerating large
portions of the search space in practice.

Learning conflict clauses. Consider the following CNF:

(¬p1 ∨ p2)︸ ︷︷ ︸
C1

∧ (¬p3 ∨ p4)︸ ︷︷ ︸
C2

∧ (¬p6 ∨ ¬p5 ∨ ¬p2)︸ ︷︷ ︸
C3

∧ (¬p5 ∨ p6)︸ ︷︷ ︸
C4

∧ (p5 ∨ p7)︸ ︷︷ ︸
C5

∧ (¬p1 ∨ p5 ∨ ¬p7)︸ ︷︷ ︸
C6

And suppose we make the following decisions and propagations.

1. Decide p1

2. Propagate p2 from clause C1

3. Decide p3

4. Propagate p4 from clause C2

5. Decide p5

6. Propagate p6 from clause C4

7. Conflicted clause C3

At this point C3 is conflicted. We should take a moment to reflect on our choices, and
how they influenced this unfortunate outcome. We know that some subset of the deci-
sions contributed to a partial assignment that cannot be extended in a way that leads to
satisfiability, but which ones?

Tracing backwards, the implication p6 was chronologically the most direct culprit, as
it was incidental to the conflict in C3. This was a consequence of our decision to set
p5, so we could conclude that this to blame and proceed backtracking to this point and
change the decision. However, C3 would not have been conflicting, even with p5 and
p6, if not for p2. Looking back at the trace, p2 was a consequence of our decision to set
p1.

Thus, we learn from this outcome that ¬p1 ∨ ¬p5 is logically entailed by our original
CNF. The process that we used to arrive at this clause is called resolution, and corre-
sponds to repeated application of the binary resolution rule.1

From the conflicted clause (C3 = ¬p6 ∨¬p5 ∨¬p2), we can derive ¬p1 ∨¬p5 by doing
resolution on the clauses that implied the assignment of literals in the conflicted clause.

1See Lecture Notes 14 for more details on binary resolution.

15-414 LECTURE NOTES RUBEN MARTINS

https://www.cs.cmu.edu/~15414/lectures/14-resolution.pdf

L16.10 Solving SAT with DPLL

In this case, p6 was assigned due to clause C4 and p2 was assigned due to clause C1.
Therefore, we can derive ¬p1 ∨ ¬p5 by doing the following resolution steps.

¬p5 ∨ ¬p2 C7 = C3 ▷◁p6 C4

¬p1 ∨ ¬p5 C8 = C7 ▷◁p2 C1

Clauses derived in this way are called conflict clauses, and they are useful in pruning
the search space. In the current example, suppose that we added the conflict clause
¬p1 ∨ ¬p5 to our set. Then any partial interpretation with p1 makes this clause unit,
implying the assignment ¬p5.

5. Backtrack to p5

6. Learn clause C7 ↔ ¬p1 ∨ ¬p5

7. Propagate ¬p5 from clause C7

8. ...

Without this, if we eventually backtrack past p5 to change the assignment to p3, then
when the procedure revisits p5 it will attempt both assignments p5 and ¬p5, encounter-
ing the same conflict again.

To summarize, the procedure for finding a conflict clause under partial assignment I
is as follows.

1. Let C be a conflicting clause under I

2. While C contains implied literals, do:

3. Let ℓ be the most recent implied literal in C

4. Let C ′ be the clause that implied ℓ by unit propagation

5. Update C by applying resolution to C and C ′ on ℓ

This procedure terminates when all of the literals in C correspond to decisions made
by dpll. However, the conflict clause produced in this way is by no means the only
sound or useful such clause that can be derived. The most efficient way to find others
is to construct an implication graph.

Definition 5 (Implication graph). An implication graph for partial assignment I is a
directed acyclic graph with vertices V and edges E, where:

• Each literal ℓi in I corresponds to a vertex vi ∈ V .

• Each edge (vi, vj) ∈ E corresponds to an implication brought about by unit prop-
agation. That is, if ℓj appears in I because of a unit propagation, and ℓi ap-
pears in the corresponding unit clause that brought about this propagation, then
(vi, vj) ∈ E.

15-414 LECTURE NOTES RUBEN MARTINS

Solving SAT with DPLL L16.11

• V contains a special conflict vertex Λ, which only has incoming edges {(ℓ,Λ)|ℓ ∈
C} for each literal appearing in a conflicting clause C.

The implication graph is a data structure maintained by many efficient implementa-
tions of DPLL. As assignments are added to a partial interpretation, the graph is up-
dated with new nodes and edges to keep track of the relationship between decisions
and their implied consequences. Likewise, nodes and edges are removed to account
for backtracking.

The implication graph for our running example is shown below.

p1@1 p2@1

p3@2 p4@2

p5@3

p6@3

Λ

C1

C2

C4

C3

C3

C3

The three decisions we made correspond to roots of the graph, and implications are
internal nodes. We also keep track of at which decision level each vertex appeared, with
the @ notation. Recall that we began (decision level 1) by deciding p1, which implied p2
by unit propagation. The responsible clause, in this case C1, labels the edge that reflects
this implication.

Visually, the implication graph makes the relevant facts quite obvious. First, notice
the subgraph containing vertices p3@2 and p4@2. The decision to assign p3 ended up
being irrelevant to the eventual conflict in C3, and this is reflected in the fact that the
subgraph is disconnected from the conflict node. When analyzing a conflict, we can
simply ignore subgraphs disconnected from the conflict node.

Focusing only on the subgraph connected to the conflict node, the correspondence
between the roots and the conflict clause we obtained via resolution, ¬p1∨¬p5, is imme-
diate. This is not an accident, and in fact is the entire reason for building an implication
graph in the first place. We can use this data structure to generalize on the resolution-
based procedure outlined above by identifying separating cuts in the implication graph.

Definition 6 (Separating cut). A separating cut in an implication graph is a minimal set
of edges whose removal breaks all paths from the roots to the conflict nodes.

The separating cut partitions the implication graph into two sides, which we can
think of as the “reason” side and the “conflict” side. Importantly, any set of vertices on
the “reason” side with at least one edge to a vertex on the “conflict” side corresponds to
a sufficient condition for the conflict. We obtain a conflict clause by negating the literals
that correspond to these vertices. In the example from earlier, we chose the following
edges highlighted in red for our conflict clause.

15-414 LECTURE NOTES RUBEN MARTINS

L16.12 Solving SAT with DPLL

p1@1 p2@1

p5@3

p6@3

Λ

C1

C4

C3

C3

C3

However, we could have just as well chosen the following, which would have led to
the clause ¬p5 ∨ ¬p2.

p1@1 p2@1

p5@3

p6@3

Λ

C1

C4

C3

C3

C3

Any conflict clause corresponding to such a cut is derivable using the resolution rule,
and is safe to add to the clause set. Different procedures have various ways of select-
ing cuts. Some choose to compute several cuts, aggressively adding multiple conflict
clauses to further constrain the search. Most modern solvers aim to find a single effec-
tive cut that corresponds to an asserting clause, which forces an implication immediately
after backtracking. Because SAT is a hard problem, these are heuristic choices that may
or may not improve performance on different classes of instances. For any sound strat-
egy, such choices are best validated empirically to identify those that yield the best
results on important problems that arise in practice.

8 SAT Solvers in Practice

Figure 1 shows the evolution of the best SAT solvers during the past 20 years. This plot
shows ordered running times for solved instances by each SAT solver. Note that these
solvers were all run in the same hardware and over the same instances. The number of
solved instances by kissat is 5× more than the best SAT solver in 2002! Even though
they have been improved with additional techniques, the backbone of these solvers is
still based in the DPLL framework with BCP and clause learning.

If you want to try SAT solving yourself note that z3 can also solve propositional
formulas and has its own implementation of a SAT solver.

Other complete SAT solvers in different programming languages can be found at:

• cadical (C++): https://github.com/arminbiere/cadical

• kissat (C): https://github.com/arminbiere/kissat

• SAT4J (Java): https://www.sat4j.org/products.php#sat

15-414 LECTURE NOTES RUBEN MARTINS

https://github.com/arminbiere/cadical
https://github.com/arminbiere/kissat
https://www.sat4j.org/products.php#sat

Solving SAT with DPLL L16.13

Figure 1: Evolution of SAT solvers in the last twenty years

• PySAT (Python): https://pysathq.github.io/

If you are interested on local search SAT solvers they also exist and can be helpful for
certain kind of problems:

• UBCSAT: http://ubcsat.dtompkins.com/

• YalSAT: http://fmv.jku.at/yalsat/

References

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, July 1960.

15-414 LECTURE NOTES RUBEN MARTINS

https://pysathq.github.io/
http://ubcsat.dtompkins.com/
http://fmv.jku.at/yalsat/

	Introduction
	Review: Propositional Logic
	(Mostly) Review: Conjunctive Normal Form
	A Simple Incomplete Procedure
	A Simple Complete Procedure
	Unit Propagation
	DPLL
	SAT Solvers in Practice

