
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Weakest Preconditions and Strongest

Postconditions

Ruben Martins*

Carnegie Mellon University
Lecture 11

Tuesday, February 20, 2024

1 Introduction

We have now studied dynamic logic in some depth, providing a semantics for programs
and also a set of valid axioms we can use to reason about the programs. These axioms
concerned propositions of the form [α]Q and were organized so as to break down the
structure of the program α. The goal was for them to be complete enough so we can
break down questions about a program’s correctness into a purely logical question.
Such a purely logical statement for the correctness of a program is called a verification
condition.

In this lecture we complete this line of investigation by providing algorithms for cal-
culating verification conditions. We discover that there are two principal algorithms
for such a calculation. In one algorithm we are given a program α and a postcondition
Q we calculate the weakest precondition P such that P → [α]Q. Here, P is weakest in the
sense that for another other correct precondition P ′ we have P ′ → P , that is, P is both
necessary and sufficient to ensure the postcondition. Using the weakest precondition is
the dominant way that verifiers such as Why3 work.

Conversely, given a precondition P and program α we can calculate the strongest
postcondition Q such that P → [α]Q. It is strongest in the sense that for any other correct
postcondition Q′ we have Q→ Q′, that is, Q is a necessary and sufficient postcondition.

*Adapted from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414/

L11.2 Weakest Preconditions and Strongest Postconditions

The strongest postcondition is closely related to symbolic execution which is used in other
tools, for example, in model checking.

Our presentation of weakest precondition and strongest postcondition is largely based
on the paper by Gordon and Collavizza [GC10] which has additional references and
some historical notes.

We ignore questions of variants and invariants for loops (or repetition), which must
in practice be present to compute the weakest precondition and strongest postcondi-
tions. It is not difficult to extend the algorithms using what we learned about them in
dynamic logic.

Remarkably, we can almost mechanically “read off” rules for calculating weakest
preconditions from the axioms for dynamic logic. This also provides a path towards
proving the algorithm correct. On the other hand, using our intuition about program
execution makes it mostly straightforward to construct a strongest postcondition, but
the relationship to dynamic logic is not obvious and would require extending our dy-
namic logic with a new modal operator.

Learning goals. After this lecture, you should be able to:

• Calculate the weakest precondition for a program given a postcondition

• Calculate the strongest postcondition for a program given a precondition

• Relate calculational rules for pre/postconditions to modalities in dynamic logic

2 Hoare Triples

It is often helpful to think of verification in terms of Hoare Triples P{α}Q which are true
if we start executing α in a state satisfying P then any final state will satisfy Q. Hoare’s
original language [Hoa69] was deterministic, so the final state (if one existed) was also
unique. It is important that P and Q here are purely logical formulas that don’t refer to
a program, although they do contain variables and expressions (in our case, arithmetic
expressions). We can easily translate this into dynamic logic as P → [α]Q which has the
same meaning.

Hoare then defined inference rules directly operating on triples, such as

P{α}R R{β}Q

P{α ; β}Q

which are valid in the sense that if the two premises are valid, then so is the conclusion.
We could verify this, for example, in dynamic logic by checking that if |= P → [α]R and
|= R→ [β]Q then |= P → [α ; β]Q. This follows by a short chain of reasoning using the
semantic definition of validity for dynamic logic.

15-414 LECTURE NOTES RUBEN MARTINS1

Weakest Preconditions and Strongest Postconditions L11.3

3 Weakest Precondition

The weakest precondition can be specified as follows when translated into our semantic
framework:

(i) wp(α)Q is a precondition for Q (it is sufficient for Q):

If ω |= wp(α)Q and ωJαKν then ν |= Q

(ii) wp(α)Q is the weakest precondition for Q (it is necessary for Q):

Whenever ωJαKν implies ν |= Q for all ν, then ω |= wp(α)Q.

These two together are precisely the semantic definition of [α]Q, namely

ω |= [α]Q iff for all ν with ωJαKν we have ν |= Q

The second clause implies that it is the weakest precondition:

Assume that P is a precondition for Q, that is,
for all µ and ν, if µ |= P and µJαKν then ν |= Q (1)
To show: for all ω, ω |= P → wp(α)Q
So assume ω |= P for an arbitrary ω (2)
To show: ω |= wp(α)Q
We have that for all ν, ωJαKν implies ν |= Q by (1) for µ = ω and (2)
Now ω |= wp(α)Q follows by condition (ii).

Note that the weakest precondition will be unique up to logical equivalence. Note
that ⊥ (falsehood) is a precondition for any α and Q, so the second condition is needed
to make the definition interesting.

The upshot is that [α]Q is logically equivalent to the weakest precondition wp(α)Q,
the difference being that the latter is purely logical, while [α]Q contains a reference to
α. This means we can now derive rules for the computation of wp(α)Q from the axioms
for [α]Q that decompose α.

We now examine each program construct in term, exploiting

|= wp(α)Q↔ [α]Q

Sequential composition. Recall the axiom for sequential composition:

|= [α ; β]Q↔ [α]([β]Q)

This give us the equation:

wp(α ; β)Q = wp(α)(wp(β)Q)

Nondeterministic choice.

|= [α ∪ β]Q↔ [α]Q ∧ [β]Q

15-414 LECTURE NOTES RUBEN MARTINS2

L11.4 Weakest Preconditions and Strongest Postconditions

This yields
wp(α ∪ β)Q = wp(α)Q ∧ wp(β)Q

Test.
|= [?P]Q↔ (P → Q)

wp(?P)Q = (P → Q)

Repetition.
|= [α∗]Q↔ Q ∧ [α]([α∗]Q)

wp(α∗)Q = Q ∧ wp(α)(wp(α∗)Q)

As a straightforward recursive definition, this may not terminate, so in practice we use
alternative of the induction axiom with invariants.
Assignment. In some ways, assignment is the most interesting clause in the definition.
Recall our axiom:

|= [x← e]Q(x)↔ ∀x′. x′ = e→ Q(x′)

Here, we rename Q(x) by changing all occurrence of x to x′. The soundness requires
that x′ does not occur in e or Q(x), which we sometimes summarize by saying that x′ is
fresh. This axiom was partly inspired by our translation from imperative to functional
programs where we bind fresh variables instead of assigning to existing ones.

One might think it is possible to perform instead a substitution. If we write Q(e) for
the result of substituting e for x in Q(x) (which is the same as e for x′ in Q(x′)), then
this implicitly relies on

|= (∀x′. x′ = e→ Q(x′))↔ Q(e)

At first, one might think this is correct if we are just being careful about substitution.
This capture-avoiding substitution, written (e/x)P , ensures that no variable in e is “cap-
tured” by a binding construct or imperative update in P and may require the renaming
of some internal variables. For example:

(x+ 1/x)([x← x+ 2]Q(x)) = [x← (x+ 1) + 2]Q(x)
(y + 1/x)([y ← 3]Q(x, y)) = [y′ ← 3](Q(y + 1, y′)) y′ ̸∈ Q(x, y)

Unfortunately, that’s not sufficient. For example,

(3/x)([(?(x > 0) ; y ← y + 1 ; x← x− 1)∗]Q(x, y))

We cannot replace any of the occurrences of x by 3 and retain the meaning of the pro-
gram. This would come up when reasoning about this program:

[x← 3 ; (?(x > 0) ; y ← y + 1 ; x← x− 1)∗]Q(x, y)

In other words, we could not use an axiom for assignment that carries out substitution this
case. With the axiom we currently have, this would correctly become

∀x′. x′ = 3→ [(?(x′ > 0) ; y ← y + 1 ; x′ ← x′ − 1)∗]Q(x′, y)

15-414 LECTURE NOTES RUBEN MARTINS3

Weakest Preconditions and Strongest Postconditions L11.5

When we then reason by about the loop using the induction axiom, the □ modality
will make the assumption x′ = 3 unavailable, for example, when reasoning about the
postcondition (where we would expect it to be x′ = 0 instead).

All these considerations then yield

wp(x← e)Q(x) = ∀x′.x′ = e→ Q(x′) (x′ ̸∈ e,Q(x′))

However, in this case Q(x) is a purely logical formula without programs, we can rewrite
it as

wp(x← e)(Q(x)) = (e/x)(Q(x))

where the latter is capture-avoiding substitution. This is now always defined, because
we can rename the quantified variables in Q(x) as needed when it has no dynamic
modalities.

4 Summary of Weakest Preconditions

wp(α ; β)Q = wp(α)(wp(β)Q)
wp(α ∪ β)Q = wp(α)Q ∧ wp(β)Q
wp(?P)Q = P → Q
wp(α∗)Q = Q ∧ wp(α)(wp(α∗)Q)
wp(x← e)Q(x) = ∀x′. x′ = e→ Q(x′) (x′ ̸∈ e,Q(x))
wp(x← e)Q(x) = (e/x)(Q(x)) (equivalently)

5 Strongest Postconditions

The strongest postcondition also has two parts: sp(α)P in two parts:

1. P{α}(sp(α)P) (it is a postcondition, or: it is a necessary consequence of P)

2. If P{α}R then sp(α)P → R (it is a strongest postcondition for P , or: is it sufficient
for all consequences of P)

Since this concerns “executing the program” and seeing how much we might know
afterwards, let’s go in the opposite direction and postulate a definition based on the
definition

(i) sp(α)P is a postcondition for P (it is necessarily true after executing α in any state
satisfying P):

For all ν and ω, if ω |= P and ωJαKν then ν |= sp(α)P

(ii) sp(α)P is sufficient for all postconditions of P (it implies all other postconditions):

Whenever ν |= sp(α)P then there is an ω such that ω |= P and ωJαKν.

15-414 LECTURE NOTES RUBEN MARTINS4

L11.6 Weakest Preconditions and Strongest Postconditions

Here we can observe that ⊤ (truth) is always a postcondition for any α and P , so the
second condition is needed to make the definition interesting.

We should check that the second clause implies that it is indeed a strongest postcon-
dition.

Assume that Q is a postcondition for P , that is,
for all µ and ν, if µ |= P and µJαKν then ν |= Q (1)
To show: for all ν ′, if ν ′ |= sp(α)P then ν ′ |= Q
So assume ν ′ |= sp(α)P (2)
To show: ν ′ |= Q
There is an ω such that ω |= P and ωJαKν ′ by (ii) for ν = ν ′ and (2)
Then ν ′ |= Q by (1) for µ = ω and ν = ν ′

We can summarize (i) and (ii) by

ν |= sp(α)P iff there exists an ω such that ω |= P and ωJαKν

We obtain the right-to-left implication of this definition by rewriting (i), exploiting that
ω does not appear in ν |= sp(α)P and the logical law (∀x. P (x) → Q) ↔ (∃x. P (x)) →
Q.
Sequential composition. This time, without the benefit of natural axioms in dynamic
logic, let’s assume we know P and think about how α ; β executes. First, we run α.
Anything we can know about the resulting state is implied by the sp(α)P . So anything
we can know about the final state after β is the strongest postcondition for that.

sp(α ; β)P = sp(β)(sp(α)P)

Perhaps not surprising in hindsight, that’s just the opposite order of propagation from
the weakest precondition.
Nondeterministic choice. We need to make sure the sp(α ∪ β)P is true no matter
whether α or β is executed. Since we don’t control which one, the best thing we can say
is the disjunction of the two strongest postconditions.

sp(α ∪ β)P = sp(α)P ∨ sp(β)P

Test. The strongest postcondition of P should hold in every poststate of ?Q, starting
from a state where P is true. Since ?Q does not change the state, P will continue to be
true. Furthermore, Q must be true if we are to reach the poststate at all, so:

sp(?Q)P = Q ∧ P

At this point we can calculate the strongest postcondition of a conditional. Recall

if Q α β ≜ (?Q ; α) ∪ (?¬Q ; β)

Then
sp(if Q α β)P = sp((?Q ; α) ∪ (?¬Q ; β))P

= sp(?Q ; α)P ∨ sp(?¬Q ; β)P
= sp(α)(sp(?Q)P) ∨ sp(β)(sp(?¬Q)P)
= sp(α)(Q ∧ P) ∨ sp(β)(¬Q ∧ P)

15-414 LECTURE NOTES RUBEN MARTINS5

Weakest Preconditions and Strongest Postconditions L11.7

Repetition. Again, we piece together the clause for repetition from nondeterministic
choice, guard, and sequential composition. We don’t treat invariants or variants here.

sp(α∗)P = P ∨ sp(α∗)(sp(α)P)

Assignment. The case for assignment is again somewhat tricky. Let’s assume our pre-
condition is P (x) and we assign to x. Now P no longer holds of x! Let’s consider some
examples:

sp(x← 3)(x = 4) = x = 3
sp(x← x+ 1)(x = 4) = x = 5
sp(x← x+ 1)(0 ≤ x ≤ 3) = 1 ≤ x ≤ 4

We see from the second and third example, that we cannot lose the information from P
entirely, but it is transformed. We need to know that it holds for the value of x before
we carried out the assignment! Since we have no concrete way of referring to the old
value of x, we have to say that there exists some old value x′, and what the know about
x′ comes from the relationship established by the assignment. That is:

sp(x← e(x))(P (x)) = ∃x′.x = e(x′) ∧ P (x′) (x′ ̸∈ e(x), P (x))

Let’s revisit the examples:

sp(x← 3)(x = 4) = ∃x′. x = 3 ∧ x′ = 4 iff x = 3
sp(x← x+ 1)(x = 4) = ∃x′. x = x′ + 1 ∧ x′ = 4 iff x = 5
sp(x← x+ 1)(0 ≤ x ≤ 3) = ∃x′. x = x′ + 1 ∧ 0 ≤ x′ ≤ 3 iff 1 ≤ x ≤ 4

Unlike in the case of the weakest precondition, we cannot always eliminate the exis-
tential quantifier over x′ because we may not be able to invert the equation x = e(x′).
This is often cited as the reason by weakest precondition calculations are preferred over
strongest postconditions: we can always eliminate the universal quantifier of the for-
mer, but not the existential quantifier of the latter.

Nevertheless, because we follow the execution of the program in construction of the
strongest postcondition it encapsulates symbolic execution which is important in pro-
gram analysis tools and compiler optimization. This can be seen most clearly when we
just use the ordinary P → [α]Q or P → ⟨α⟩Q and pack P with precise information
about all variables that might be changed by Q. In that situation, the existential quanti-
fier of the pure strongest postcondition can be eliminated because P (x′) in the formula
determines x′ uniquely to be the value of x′ in the prestate. This is developed in some
detail by Platzer [Pla04].

References

[GC10] Mike Gordon and Hélène Collavizza. Forward with Hoare. In Cliff B. Jones,
A.W. Roscoe, and Kenneth R. Wood, editors, Reflections on the Work of C.A.R.
Hoare, chapter 5, pages 101–121. Springer, 2010.

15-414 LECTURE NOTES RUBEN MARTINS6

L11.8 Weakest Preconditions and Strongest Postconditions

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576–580, 1969.

[Pla04] André Platzer. Using a program verification calculus for constructing speci-
fications from implementations. Minor Thesis (Studienarbeit), University of
Karlsruhe, Department of Computer Science, February 2004. URL: https:
//lfcps.org/logic/Minoranthe.html.

15-414 LECTURE NOTES RUBEN MARTINS7

https://lfcps.org/logic/Minoranthe.html
https://lfcps.org/logic/Minoranthe.html

	Introduction
	Hoare Triples
	Weakest Precondition
	Summary of Weakest Preconditions
	Strongest Postconditions

