
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Semantics

Matt Fredrikson

Carnegie Mellon University
Lecture 5

September 8, 2025

1 Introduction

This lecture begins Part II: From Informal to Formal Reasoning. We need to formalize the
various objects of study in the course so far: (1) a programming language, (2) a logic
for reasoning about programs, and (3) a proof that the reasoning is correct in the sense
that it is consistent with the meaning of programs. Once these aspects have been nailed
down, formally, we have a basis for implementing them. We also understand them
more thoroughly which means we will be able to use verification tools more effectively
and even extend them to cover new computational phenomena.

There are many choices and tradeoffs for such a study, such as the extent of the fea-
tures in the programming language, the expressive power of the logic, and the prag-
matics of using the language and its logic for verification. A natural first idea would
be to use WhyML, but it is too complex for us to study in the kind detail we wish to
in this course. We conclude that the language should be small, but have the essential
features that help us understand WhyML. Within that context, we should also decide
whether to focus on functional or imperative aspects of WhyML. We have the oppor-
tunity to study functional programming and type theory in a number of other courses
in the curriculum including 15-312 Foundations of Programming Languages and 15-417
Constructive Logic. In this course were therefore tak a different perspective and study a
small imperative programming language.

Even in the context of reasoning about imperative programs there are different tradi-
tions and approaches. Historically, there is Hoare logic that studies tripes P{α}Q consist-
ing of a precondition P , a program α, and a postcondition Q. This has been generalized
to handle heap-allocated objects in separation logic and shared-memory concurrency in
concurrent separation logic. We follow a different trajectory in choosing dynamic logic

http://www.cs.cmu.edu/~15414

L5.2 Semantics

inspired by traditional modal logic. It has also been generalized in multiple ways, in-
cluding differential dynamic logic which supports reasoning about hybrid discrete and
continuous evolving systems. Differential dynamic logic is at the core of 15-424 Logical
Foundations of Cyberphysical Systems.

In outline, we will introduce a small imperative language and a language of formu-
las and then define the meaning (“semantics”) of both programs and formulas. This
will answer the questions How do programs execute? and When are formulas true? We
will ignore aspects of concrete syntax and work with abstract syntax, being unconcerned
with how to parse or type-check programs. You can learn more about those aspects of
programming languages in 15-312 (mentioned above) and 15-411 Compiler Design.

Learning goals. After this lecture, you should be able to:

• Simulate the dynamics of simple while programs

• Determine if programs are semantically equivalent

• Define the meaning of imperative language constructs

• Reason semantically about arithmetic formulas

• Specify semantics relationally

2 Straight-Line Programs

We now present our small imperative programming language in stages. The develop-
ment is inherently open-ended in the sense that we will introduce more constructs as
our study goes on.

For the sake of simplicity we assume that all variables range of the integers Z. We
have a simple language of arithmetic expressions e, with the usual conventions that we
do not detail here. We use a, b, c for integer constants and x to stand for variables.

Arithmetic Expressions e ::= c | x | e1 + e2 | e1 − e2 | e1 ∗ e2 | . . .

Since expressions contains variables, their meaning is determined with respect to a state
that assigns integers to variables. We use ω, µ, ν to range over states and assume that
they are defined on all variables. We write ω(x) = c if ω maps x to c. Then the value of
expression e in state ω is written as

ωJeK = c

and is easily defined based on the structure of e. For example:

ωJcK = c
ωJxK = ω(x)
ωJe1 + e2K = ωJe1K + ωJe2K
ωJe1 − e2K = ωJe1K− ωJe2K
. . .

15-414 LECTURE NOTES MATT FREDRIKSON

Semantics L5.3

The last two equations may look somewhat odd—we have to keep in mind that ‘+’ and
‘−’ on the left-hand side are pieces of syntax that form expressions while ‘+’ and ‘−’ on
the right-hand side are the mathematical operations on integers. Other operations are
defined analogously.

Programs are denoted by α and β and we start here with two simple constructs:
assignment x← e and sequential composition α ; β.

Programs α, β ::= x← e | α ; β | . . .

The meaning of a program is a relation between the prestate and poststate of its execution.
It is a relation instead of a function because we would like to accommodate nontermi-
nating programs (no possible poststate) and also nondeterministic programs (multiple
possible poststates). We write

ωJαKν

if the meaning of the program α relates prestate ω to poststate ν.
We define the meaning of assignment x← e to evaluate e in the current state to c and

then update the state to map x to c. In symbols:

ωJx← eKν iff ν = ω[x 7→ c] where c = ωJeK

Here we use the notation ω[x 7→ c] for the result of updating the state ω by mapping x
to c (no matter what it was before).

The meaning of sequential composition α ; β is to execute first α and then β from the
resulting state. That is:

ωJα ; βKν iff there is a µ such that ωJαKµ and µJβKν

In other words, the relation denoted by α ; β is the composition of the relations denoted
by α and β.

As an example, let’s compute

(ω[x 7→ a])Jx← x+ 2Kν

and we find ν = (ω[x 7→ a])[x 7→ a+ 2] = ω[x 7→ a+ 2] Slightly more complicated is

(ω[x 7→ a])Jx← x+ 1 ; x← x+ 1Kν

We determine that there is an intermediate state µ = ω[x 7→ a + 1] and a final state
ν = ω[x 7→ a+ 2].

So, both of these programs define the same relation between ω[x 7→ a] and ω[x 7→
a+ 2] Therefore we can state that these two programs are semantically equivalent

Jx← x+ 2K = Jx← x+ 1 ; x← x+ 1K

They have the same meaning because they have the same effects on the state. This, by
the way, might fail to be true if the language were extended to allow shared memory

15-414 LECTURE NOTES MATT FREDRIKSON

L5.4 Semantics

concurrency because another process can intervene after the first assignment on the
right, while the left atomically increments x by two. Lesson: we always have to be
careful about the extent of the language when we reason about it, be it semantically (as
here) or logically (as in the next lecture).

As another example we consider this strange way to swap the values between two
variables x and y without an auxiliary variable. We would like to prove:

(ω[x 7→ a, y 7→ b])Jx← x+ y ; y ← x− y ; x← x− yK(ω[x 7→ b, y 7→ a])

For this we have to calculate the intermediate states. Those are

ω[x 7→ a+ b, y 7→ b]

after the first assignment and

ω[x 7→ a+ b, y 7→ a]

after the second assignment, after which we reach the desired poststate.

3 Conditionals

We now add conditionals if P αβ to our language, read as “if P then α else β”. A charac-
teristic of the dynamic logic approach is that formulas P do double duty: on one hand
they serve as conditions in if-then-else programs and (shortly) guards on while loops.
On the other hand we also use them to reason about programs as shown in the next
lectures.

Programs α, β ::= x← e | α ; β | if P αβ | . . .
Formulas P,Q ::= e1 = e2 | e1 ≤ e2 | ⊤ | ⊥ | P ∧Q | P ∨Q | P → Q | ¬P

| ∀x. P | ∃x. P | . . .

In concrete syntax we usually write ⊤ (top) as “true”, ⊥ (bottom) as “false”, ¬ as “not”
and we write out the quantifiers as “forall” and “exists”.

In order to define the meaning of the conditional, we first need to define the meaning
of the formulas, in mathematical terms. Because variables (and therefore quantifiers)
range just over integers, the language of formulas we are concerned with is that of
integer arithmetic. We define their meaning relative to an assignment ω of values to
variables

ω |= P P is true in state ω

15-414 LECTURE NOTES MATT FREDRIKSON

Semantics L5.5

It is defined on the structure of P .

ω |= ⊤ always
ω |= ⊥ never
ω |= e1 = e2 iff ωJe1K = ωJe2K
ω |= e1 ≤ e2 iff ωJe1K ≤ ωJe2K
ω |= P ∧Q iff ω |= P and ω |= Q
ω |= P ∨Q iff ω |= P or ω |= Q
ω |= ¬P iff ω ̸|= P
ω |= P → Q iff whenever ω |= P then also ω |= Q
ω |= ∀x. P iff ω[x 7→ a] |= P for all a ∈ Z
ω |= ∃x. P iff ω[x 7→ a] |= P for some a ∈ Z

Because quantified integer arithmetic is undecidable, this definition is not effective in
the sense that we cannot use it directly to determine whether a give formula is true.
This is a problem if we want to actually execute our programs containing conditionals.
So we usually restrict the formulas that can appear in conditionals to be quantifier-free,
in which case it is easy to determine whether they are true or false.

With this out of the way, we can now define the meaning of the conditional by cases
on the truth of P .

ωJif P αβKν iff ωJαKν when ω |= P
ωJβKν when ω ̸|= P

4 While Loops

The abstract syntax for while loops is whileP α which should somehow be the same
as if P (α ; whileP α) skip, where skip is a program that has no effect. Although it is
perfectly possible to make this work as a so-called inductive definition, it has the issue
that whileP α appears on both sides. So we break it down by “guessing” the number of
iterations of the loop, using an auxiliary relation JwhileP αKn indexed by an n ≥ 0. If
n = 0 we must exit the loop so P should be false, and if n > 0 we should go around the
loop once, followed by n− 1 more iterations.

ωJwhileP αKν iff there exists an n ≥ 0 such that ωJwhileP αKnν

ωJwhileP αK0ν iff ω ̸|= P and ω = ν
ωJwhileP αKn+1ν iff ω |= P and there exists a µ such that ωJαKµ and µJwhileP αKnν

We can appeal to this definition to compute the meaning of a few simple programs.
Actually, we will look at whole families of programs because it doesn’t matter what
some of the components are. For example, any program while false α will behave the
same, regardless of α. Instead of looking up the answer immediately, we suggest solv-
ing these yourself first with careful reference to the definitions.

ωJwhile trueαKν
ωJwhile falseαKν
ωJx← xKν

15-414 LECTURE NOTES MATT FREDRIKSON

L5.6 Semantics

We calculate
ωJwhile trueαKν never
ωJwhile falseαKν iff ν = ω
ωJx← xKν iff ν = ω

We see, for example, that
Jwhile falseαK = Jx← xK

where the equality here denotes an equality between two relations. Further examples
in the next section.

5 Tests

As the final language construct we consider the test or guard ?P . Intuitively, it does
nothing if P is true in the current state and “aborts” the computation if P is false. By
“abort” we mean that there is no poststate, a semantics shared by a nonterminating
while loop.

ωJ?P Kν iff ω |= P and ω = ν

With this, we can define

skip ≜ ?true does nothing
abort ≜ ?false aborts

These are notational definitions in the sense that the new program on the right expands
to the program on the left. If we want to compute the semantics of the new kind of
program we would just expand the definition and then compute the semantics of the
result.

Tests can be used to model preconditions. A program such as

?(n ≥ 0) ; α

tests the condition n ≥ 0 and proceeds with α if it is true. Therefore we can assume
this condition while reasoning about the effect of α. If the condition is false then the
computation aborts, so the final states only reflect the initial states that satisfy the test.

As an example, consider (once again) the following program to compute the fib(n).

?(n ≥ 0) ;
i← 0 ;
a← 0 ;
b← 1 ;
while (i < n)
(b← b+ a ;
a← b− a ;
i← i+ 1)

15-414 LECTURE NOTES MATT FREDRIKSON

Semantics L5.7

If we start in a state ω[n 7→ c] then when we reach the while loop we have

ω0 = ω[n 7→ c, a 7→ fib(0), b 7→ fib(1), i 7→ 0]

After iteration k ≤ c, we have

ωk = ω[n 7→ c, a 7→ fib(k), b 7→ fib(k + 1), i 7→ k]

So the final state of the whole loop, which is also the final state of the program, has the
form

ωc = ω[n 7→ c, a 7→ fib(c), b 7→ fib(c+ 1), i 7→ c]

6 Side Note on Conditionals and Arithmetic

Goldbach’s conjecture, proposed in 1742 and still open, states that every even natural
number greater than 2 is the sum of two primes. We can actually express this quite
easily in arithmetic.

prime(p) ≜ ¬∃a.∃b. a > 1 ∧ b > 1 ∧ a ∗ b = p

even(a) ≜ ∃b. 2 ∗ b = a

goldbach ≜ ∀n.n > 2 ∧ even(p)→ ∃p.∃q. prime(p) ∧ prime(q) ∧ p+ q = n

Note that goldbach does not depend on any variables. According to our semantics it
should therefore be either true or false. This in turns means that for

ωJif goldbach (x← 1) (x← 0)Kν

we have ν(x) = 1 if ω |= goldbach and ν(x) = 0 if ω ̸|= goldbach. So you can appreciate
the difficulty of trying to execute this program!

References

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Straight-Line Programs
	Conditionals
	While Loops
	Tests
	Side Note on Conditionals and Arithmetic

