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1 Introduction

The programs that we have discussed so far are somewhat limited. By restricting the
statements allowed in programs to simpler forms, we have been able to understand
the fundamental ideas behind the formal semantics and proof techniques for reasoning
about program behavior. Importantly, the relative simplicity of the language allowed
us to do this without becoming overwhelmed with a significant number of cases and
details that need to be considered for rigor, but are not essential to these fundamental
ideas.

“Real” programming languages universally support more advanced ways of struc-
turing programs that encourage abstraction, modularity, and reuse. One such construct
is the procedure, which gives programmers a way to encapsulate some functionality so
that it can be invoked repeatedly in the future. In this lecture we will introduce pro-
cedures into the language we have been studying. We will allow our procedures to
make use of call-by-value arguments and recursion, but we will not incorporate some
of the features widely-used in imperative languages such as local variables and explicit
return values.

We will develop ways of reasoning about procedure calls compositionally, using in-
duction to establish contracts for recursive procedures consisting of pre and postcon-
ditions along with termination. Having established contracts, we will see how logical
monotonicity applies to establish a general rule for making repeated use of previous
contracts at call sites. To deal with calls that pass arbitrary expressions as arguments,
we will introduce ghost state to simplify call expressions by adding additional proof
context to keep track of essential relationships across call sites and updates.
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L12.2 Procedures and Ghost State

2 Review: programs so far

So far, we’ve defined a fairly simple programming language with support for arrays,
conditionals, and loops.

term syntax e, ẽ ::= x (where x is a variable symbol)
| c (where c is a constant literal)
| a(e) (where a is an array symbol)
| e+ ẽ
| e · ẽ

program syntax α, β ::= x := e (where x is a variable symbol)
| a(e) := ẽ (where a is an array symbol)
| ?Q
| if(Q)α elseβ
| α;β
| while(Q)α

Semantically, we modeled arrays as functions from their domain (Z) to their range (Z),
which meant that the states of our programs are maps from the set of all variables to
Z ∪ (Z→ Z). We then defined the semantics of terms with arrays in them.

Definition 1 (Semantics of terms). The semantics of a term e in a state ω ∈ S is its value
ω[[e]]. It is defined inductively by distinguishing the shape of term e as follows:

• ω[[x]] = ω(x) for variable x

• ω[[c]] = c for number literals c

• ω[[e+ ẽ]] = ω[[e]] + ω[[ẽ]]

• ω[[e · ẽ]] = ω[[e]] · ω[[ẽ]]

Definition 2 (Transition semantics of programs). Each program α is interpreted seman-
tically as a binary reachability relation [[α]] ⊆ S × S over states, defined inductively by

1. [[x := e]] = {(ω, ν) : ν = ω except that ν[[x]] = ω[[e]]}
The final state ν is identical to the initial state ω except in its interpretation of the
variable x, which is changed to the value that e has in initial state ω.

2. Ja(e) := ẽK = {(ω, ν) : ω = ν except ν(a) = ω(a){ωJeK 7→ ωJẽK}}
The final state ν is identical to the initial state ω except in its interpretation of the
array symbol a, which is updated at position ωJeK to take the value ωJẽK.

3. [[?Q]] = {(ω, ω) : ω |= Q}
The test ?Q stays in its state ω if formula Q holds in ω, otherwise there is no
transition.
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4. [[if(Q)α elseβ]] = {(ω, ν) : ω |= Q and (ω, ν) ∈ [[α]] or ω 6|= Q and (ω, ν) ∈ [[β]]}
The if(Q)α elseβ program runs α if Q is true in the initial state and otherwise
runs β.

5. [[α;β]] = [[α]] ◦ [[β]] = {(ω, ν) : (ω, µ) ∈ [[α]], (µ, ν) ∈ [[β]]}
The relation [[α;β]] is the composition [[α]] ◦ [[β]] of relation [[β]] after [[α]] and can,
thus, follow any transition of α through any intermediate state µ to a transition of
β.

6. [[while(Q)α]] =
{

(ω, ν) : there are an n and states µ0 = ω, µ1, µ2, . . . , µn = ν
such that for all 0 ≤ i < n: 1© the loop condition is true µi |= Q and 2© from
state µi is state µi+1 reachable by running α so (µi, µi+1) ∈ [[α]] and 3© the loop
condition is false µn 6|= Q in the end

}
The while(Q)α loop runs α repeatedly when Q is true and only stops when Q
is false. It will not reach any final state in case Q remains true all the time. For
example [[while(true)α]] = ∅.

3 Adding procedure calls

Now we will extend our language with procedure calls. We’ll assume that our language
doesn’t have any scoping conventions, so procedures can read and modify any variable
in the state. To start out, we’ll assume that procedures take no arguments, and can
modify any variable or array in the state.

We update the program syntax to add a new alternative for procedure call, distin-
guished by the presence of parenthesis after the procedure name:

program syntax α, β ::= x := e (where x is a variable symbol)
| a(e) := ẽ (where a is an array symbol)
| ?Q
| if(Q)α elseβ
| α;β
| while(Q)α
| m(e1, . . . , en)

3.1 First, without recursion

If we can assume that the body of m does not make any recursive calls, then we can
reason about calls to m in a straightforward way.

In the call m(e1, . . . , en), the e1, . . . , en are called the actual parameters. For the corre-
sponding declaration,

proc m(x1, . . ., xn) {...}

the x1, . . . , xn are called the formal parameters. The actual parameters are terms that
are evaluated in the calling context, using the current state at the moment the call is
made. The formal parameters are variables that are assigned the corresponding values
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of the actuals, for later use in the procedure body. This convention corresponds to the
typical call-by-value semantics present in many languages. To simplify matters when
reasoning compositionally, we will assume that the only free variables appearing in a
procedure are its formal arguments. This means that the body of a procedure is only
allowed to “read” from its arguments, and not from any other variables.

When formalizing the semantics of procedure calls, we need to be careful about the
state used to evaluate the actuals. We might be tempted to reduce the semantics of
a procedure call to a seemingly equivalent sequence of assignments and inlining op-
erations. For example, in the following let α be the body of m and v1, . . . , vn be fresh
variables, and assume for the sake of clarity that we are only concerned for the moment
with non-recursive procedures.

[[m(e1, . . . , en)]] = [[v1 := x1; . . . ; vn := xn;x1 := e1; . . . ;xn := en;α;x1 := v1; . . . ;xn := vn]]

The idea behind this definition is that before entering the procedure body, the current
values of the variables corresponding to the formal parameters are stored in a set of
fresh new variables. The formal parameter variables are then assigned to the terms
given as actuals, and the procedure body is run. When it completes, the formals are
restored to their values before the call.

This definition captures the notion of locality that we want with respect to formal
parameters. Namely, that within the procedure they take the values passed in, and
the calling context need not worry about variables that happen to collide with formal
parameters being overwritten. However, this definition introduces spurious dependen-
cies between the actuals. Consider the following program.

proc foo(x, y) {

...

}

x := 1;

a := 0;

b := x+2;

foo(a,b);

In this example, if we used the above semantics, then the value passed to foo in the
formal parameter y would be 2, rather than 3 as we would expect.

What we want the semantics to encode is a parallel assignment of all of the formal
parameters to their actuals. This leads us to the following definition.

[[m(e1, . . . , en)]] = {(ω, ν) : ∃ µ1, µ2 where µ1 = ω except µ1(xi) = ω[[ei]] for i = 1, . . . , n,
(µ1, µ2) ∈ [[α]],
ν = µ2 except ν(xi) = ω(xi) for i = 1, . . . , n}

3.2 Semantics, with recursion

Consider the following procedure that implements the factorial function. It assumes
that the variable n contains the “input”, and stores the computed factorial value in r.
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proc fact(n) {

if(n = 0) { r := 1 }

else { fact(n-1); r := r * n; }

}

Before going further, let’s have another look at the semantics of procedure calls. In
non-recursive cases, we can always inline the body of a procedure, replacing all proce-
dure calls with their corresponding bodies, and repeating that process until there are
no further opportunities to do so. When we reach this point, we will be left with a pro-
gram that doesn’t have any procedure calls, and we can apply the semantics for other
program constructs that we have built up over the semester.

Now that we want to account for recursion, things are different. If we use this process
of inlining, we may never finish because each time we replace a call with its body, we
introduce at least one more call to the same procedure! Let’s formalize this a bit, and
see if we can arrive at further insights.

If α is the body of a recursive procedure m, then we will use the notation α(k) to denote
a syntactic approximation of α after k levels of inlining recursive calls. When k = 0, we
simply replace the entire body with abort, which you will recall from earlier is defined
as: abort ≡?false, with semantics [[abort]] = ∅. To be precise, we define the syntactic
approximation α(k) inductively on k as follows:

α(0) = abort

α(k+1) = αα
(k)

m()

(1)

Where αα
(k)

m() denotes α with all instances of m() replaced with α(k).
We will write m(k) to denote the procedure obtained by replacing the body with α(k).

So, for example applying this to the fact procedure from before, fact(1) would corre-
spond to the program:

proc fact(1)(n) {

if(n = 0) { r := 1 }

else { abort; r := r*n; }

}

The second approximation fact(2) would give us:

proc fact(2)(n) {

if(n = 0) { r := 1 }

else {

if(n-1 = 0) { r := 1 }

else { abort; r := r*n; };

r := r*n

}

}

In general, we would write fact(k) when k > 0 as:
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proc fact(k)(n) {

if(n = 0) { r := 1 }

else { factk−1(n-1); r := r*n; }

}

Let’s think about this in the context of concrete executions of fact. If we call fact(n)
with n ≤ 0, then we can reason about the behavior of this by considering fact(1). The
reason is that we will never encounter the “else” branch, and return the correct answer
y = 1 = 0!. So we know that:

[[fact(1)(n)]] ⊆ [[fact(n)]]

Similarly, if we call fact(n) with n ≤ 1, then we can reason about the behavior by
considering fact(1) and fact(2). Looking back at the second approximation of fact
listed above, we see that n will be decremented immediately in the “else” branch, and
tested against 0 before the abort is ever reached. So we know that:

[[fact(1)(n)]] ∪ [[fact(2)(n)]] ⊆ [[fact(n)]]

Continuing with this line of reasoning, the pattern is clear. If we want to account for
the behavior of calling fact(n) where n is at most k, then we need to ensure that,

[[fact(1)(n)]] ∪ · · · ∪ [[fact(k+1)(n)]] ⊆ [[fact(n)]]

But we want to characterize the full semantics of fact, imposing no upper bound on
the value of n from which we call it. We can take our reasoning to its logical conclusion,
and define the semantics of a procedure call as shown in Definition 3.

Definition 3 (Semantics of procedure calls (with recursion)). The semantics of m(e1, . . . , en)
are as follows:

[[m(e1, . . . , en)]] = {(ω, ν) : (ω, ν) ∈
⋃
k≥0 [[m(k)(e1, . . . en)]]} (2)

Although we did not talk about the inclusion of m(0) on our way to this definition,
note that because [[m(0)]] = ∅, it follows trivially.

4 Reasoning compositionally about procedure calls

Now that we understand the meaning of procedure calls, we will derive reasoning
principles for dealing with them in correctness proofs. We will start with a rule that lets
of make use of the familiar notion of contracts, and then see how to go about showing
that contracts hold for a given procedure.
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4.1 Contracts

However, we often know more about procedures because we write contracts, or precondition-
postcondition pairs that specify requirements at the call site and guarantees about the
state afterwards. If we assume a preconditionA and postconditionB for m, then we can
avoid having to prove things directly about the body α and instead just show that the
contract gives us what we need.

Theorem 4. The contract procedure call rule is sound by derivation.

([call])
Γ ` A A ` [m(x1, . . . , xn)]B B ` P

Γ ` [m(x1, . . . , xn)]P,∆

Proof. We can derive this rule using [inl], M[·], and two applications of cut. The prin-
ciple follows from monotonicity, and is not specific to the program in the box being a
procedure call. The proof is as follows.

Γ ` A,∆
A ` [m(x1, . . . , xn)]B

B ` P
M[·][m(x1, . . . , xn)]B ` [m(x1, . . . , xn)]P

cut,WL A ` [m(x1, . . . , xn)]P
cut,WL,WR Γ ` [m(x1, . . . , xn)]P,∆

Note that because the proof of [call] follows from monotonicity, which also holds for
diamond modalities, the corresponding total correctness rule is sound as well.

Theorem 5. The contract procedure call rule 〈call〉 is sound by derivation.

(〈call〉)
Γ ` A A ` 〈m(x1, . . . , xn)〉B B ` P

Γ ` 〈m(x1, . . . , xn)〉P,∆

The rules [call] and 〈call〉 are convenient in practice because we can decide on the
contractA,B once and for all before using the procedure, construct a proof ofA ` [α]B,
and reuse that proof whenever we need to reason about a call to m. All that we need
to do for each call is derive a proof that the calling context entails the precondition
(Γ ` A,∆), and a corresponding proof that the postcondition gives the property we’re
after (B ` P ). This sort of compositionality lets us reuse past work, and is key to scaling
verification to larger and more complex programs.

4.2 Total correctness

Now that we’ve seen how to reason compositionally about procedure calls, let’s see
how we can go about establishing a contract to begin with. We’ll do so in the general
case that includes recursion, as non-recursive procedures can be dealt with through
sufficient inlining as described above.
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L12.8 Procedures and Ghost State

We should expect that in order to reason about recursive procedure calls, we will
need to use induction. Just as when reasoning about loops we need to find an inductive
loop invariant that allows us to conclude things about executions that may continue for
arbitrarily many steps, when reasoning about procedures we typically need to find a
contract that allows us to reason about the effects of calls, recursive or otherwise.

Recall from our discussion of loop convergence the var rule.

(var)
Γ ` J,∆ J,Q, ϕ = n ` 〈α〉(J ∧ ϕ < n) J,Q ` ϕ ≥ 0 J,¬Q ` P

Γ ` 〈while(Q)α〉P,∆
(n fresh)

This rule requires that we select a term ϕ whose value will decrease with each iteration
of the loop. It should stay nonnegative as long as the loop continues executing, assum-
ing that we declare 0 to be the lower bound towards which ϕ converges. As long as
it never violates this bound, the invariance of ϕ’s decreasing lets us conclude that the
loop terminates.

How can we use similar reasoning with a recursive procedure m? Intuitively, we want
to associate a similar term ϕ with each call to m, and argue that this term decreases each
time m makes a recursive call. The rule 〈rec〉 below captures this reasoning, where α is
the body of m and x̄ is the list of m’s formal arguments.

(〈rec〉)
Γ,∀x̄.A ∧ ϕ < n→ 〈m(x̄)〉B ` A ∧ ϕ = n→ 〈α〉B,∆ A ` ϕ ≥ 0

Γ ` A→ 〈m(x̄)〉B,∆
(n fresh)

Intuitively, this rule says that if we want to conclude that m terminates in a state de-
scribed by B when starting in one described by A, then we reason about the body
assuming that the variant term ϕ = n when it begins executing. We are allowed to
assume that recursive calls beginning in a state where ϕ < n will terminate in one de-
scribed by B. Importantly, we must also show that the variant ϕ is bounded below by
0.

Theorem 6 ([AdBO09]). The rule 〈rec〉 is sound. That is, if we have

|= (∀x̄.A ∧ ϕ < n→ 〈m(x̄)〉B)→ (A ∧ ϕ = n→ 〈α〉B) (3)

and
|= A→ ϕ ≥ 0 (4)

then it is the case that
|= A→ 〈m(x̄)〉B (5)

Back to fact. Let’s apply this to fact from before, and prove that it terminates. One
minor annoyance is that 〈rec〉 relies on a fresh variable n, which we also used in fact.
We’ll modify the program slightly to ensure that the steps of our proof line up with the
symbols in 〈rec〉.
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proc fact(x) {

if(x = 0) { r := 1 }

else { fact(x-1); r := r*x; }

}

Recall the contract we stated earlier.

A ≡ x ≥ 0
B ≡ r = x!

In the proof, we’ll use the following shorthand to keep the proof steps more concise:

P ≡ ∀x.x ≥ 0 ∧ ϕ < n→ 〈fact(x)〉r = x!

We have only to decide what to use as a variant. Looking at the code, each time fact is
called, x decreases from the value that it had on entry to the procedure. So we will use
ϕ ≡ x. The proof is then as follows, where α denotes the body of fact.

〈rec〉,→R,∧L

〈if〉,→R

a© 〈;〉,〈:=〉
P, x = n, x > 0 ` 〈fact(x− 1)〉r ∗ x = x!

P, x = n, x > 0 ` 〈fact(x− 1); r := r ∗ x〉r = x!

P, x ≥ 0, x = n ` 〈α〉r = x!
id

∗
x ≥ 0 ` x ≥ 0

` x ≥ 0→ 〈fact(x)〉r = x!

The proof a© corresponds to the branch of the conditional where x = 0. Note that this
is the base case of the recursive procedure, and follows easily as seen below:

〈:=〉

Z
∗

P, x = n, x = 0 ` 1 = x!

P, x = n, x = 0 ` 〈r := 1〉r = x!

Now we continue with the other branch where the main proof left off, where we are
ready to deal with the call to fact. Here is where the fact that we have universally
quantified over x will help, as we can instantiate x with x − 1 to reflect the fact that
this is the value of the actual argument that the recursive call is given. Note that we
leave out the antecedent premise for the application of→L; it follows directly from the
assumptions x = n, x > 0.

∗
Z r = (x− 1)! ` r ∗ x = x!
M 〈fact(x− 1)〉r = (x− 1)!, x = n, x > 0 ` 〈fact(x− 1)〉r ∗ x = x!
→Lx− 1 ≥ 0 ∧ x− 1 < n→ 〈fact(x− 1)〉r = (x− 1)!, x = n, x > 0 ` 〈fact(x− 1)〉r ∗ x = x!
∀L ∀x.x ≥ 0 ∧ x < n→ 〈fact(x)〉r = x!, x = n, x > 0 ` 〈fact(x− 1)〉r ∗ x = x!

This completes the proof.
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5 Ghost state

One thing to notice about the 〈call〉 and 〈rec〉 rules is that they only apply to calls
done on actuals corresponding to variables, not arbitrary terms. So, for example, if
we wanted to prove the following line, we cannot use the 〈rec〉 rule, because a+ b is not
a variable.

a ≥ 0, b ≥ 0 ` 〈fact(a+ b)〉r = (a+ b)!

What we need is a way of introducing the fact that when we call the factorial procedure,
we set the formal argument x to the term a+ b, and also a way of remembering that we
did this afterwards.

We will see how to do this by the use of “ghost state” in our proof. Consider the
following proof rule IA.

(IA)
Γ ` [y := e]P,∆

Γ ` P,∆
(y new)

(IA)
Γ ` 〈y := e〉P,∆

Γ ` P,∆
(y new)

IA is essentially the assignment axiom in reverse. It introduces a new assignment into
the program that was not present before. The fact that this rule is sound follows from
the assignment axiom, which allows us to conclude that P ↔ [y := e]P because y is not
mentioned in P .

This rule allows us to introduce a new fresh variable into our proof that remembers a
value at a particular point. Because the variable never existed in the program, but will
affect the proof, we call it a ghost variable. When using ghost variables, it is important to
make sure that the proof maintains forward momentum. At this point in the semester,
it may have become second nature to immediately apply [:=] whenever you see an
assignment statement. This would be counterproductive with a ghost variable, as it
would leave us right where we began.

IA

[:=]
Γ ` P,∆

Γ ` [y := e]P,∆

Γ ` P,∆

In order to move the proof forward after introducing a ghost variable, use the [:=]= rule
that we introduced in previous lectures.

([:=]=)
Γ, y = e ` P (y),∆

Γ ` [x := e]P (x),∆
(y new)

In fact, we can reduce the tedium of repeating these steps by stating a derived rule that
combines these steps into one. Below GI does exactly this: introduces a fresh variable y
into the context that remembers the value of a term e.

(GI)
Γ, y = e ` P,∆

Γ ` P,∆
(y new)
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Now let’s go back to the factorial procedure and see it in action.

a ≥ 0, b ≥ 0, x = a+ b ` 〈fact(x)〉r = x!
=Ra ≥ 0, b ≥ 0, x = a+ b ` 〈fact(a+ b)〉r = (a+ b)!
GI a ≥ 0, b ≥ 0 ` 〈fact(a+ b)〉r = (a+ b)!

Now the proof is approachable using 〈call〉.

∗
Za ≥ 0, b ≥ 0, x = a+ b ` x ≥ 0 x ≥ 0 ` 〈fact(x)〉r = x!

∗
idr = x! ` r = x!

〈call〉 a ≥ 0, b ≥ 0, x = a+ b ` 〈fact(x)〉r = x!

Of course, the middle premise is exactly what we proved earlier when demonstrating
the use of 〈rec〉. Notice, however, that if we hadn’t applied =R after GI earlier, to the
(a+b) in the postcondition, then we would not have been able to complete the rightmost
premise. The reason is that the context we gained from GI relating x to a+b is no longer
available when reasoning about the post-state, due to the fact that 〈call〉 is a special case
of monotonicity. Oftentimes when using ghost state in a proof, a bit of planning and
foresight is needed to set things up to ensure that the proof will eventually close out.

5.1 Invariants over destructive updates

Another common use of ghost variables is to deal with the fact that some programs
change the values of variables that are needed for contracts. An example of this is any
sorting procedure, which must modify its input.

proc BubbleSort(a, n) {

i := n-1;

while (1 ≤ i) {

PushRight(a, i);

i := i - 1;

}

}

Any complete specification must say not only that the returned array is sorted, but that
it contains the same contents as the original array that was passed in. We capture this
below with the perm predicate, which is true when its arguments are permutations of
eachother. The ghost variable c “memorizes” the original array a so that it can be used
in the postcondition.

A ≡ arrayeq(a, c) ∧ 0 < n
B ≡ perm(a, c) ∧ sorted(a, 0, n)

This is a useful and general tool to use in proofs, and it is not restricted to procedure
contracts. Consider the PushRight procedure itself.

proc PushRight(a, i) {

j := 0;
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L12.12 Procedures and Ghost State

while(j < i) {

if(a(j) > a(j+1))

t := a(j+1);

a(j+1) := a(j);

a(j) := t;

}

j := j + 1;

}

}

This procedure increases the range for which a is sorted by one element, and maintains
along the way that the array is a permutation of its original contents. A nice way to
prove this is to utilize the fact that permutations are transitive.

∀x, y, z.perm(x, y) ∧ perm(y, z)→ perm(x, z)

Namely, we can maintain an invariant which says that a is a permutation of the original
(ghosted) c:

J ≡ perm(a, c)

Then to show that the invariant is preserved, we create a new ghost variable d to hold
the contents of a at the beginning of a loop iteration, and prove that the contents of a at
the end of the iteration are a permutation of d. The transitive property does the rest.

6 Summary of today’s rules

([call])
Γ ` A,∆ A ` [m(x1, . . . , xn)]B B ` P

Γ ` [m(x1, . . . , xn)]P,∆

(〈call〉)
Γ ` A A ` 〈m(x1, . . . , xn)〉B B ` P

Γ ` 〈m(x1, . . . , xn)〉P,∆

(〈rec〉)
Γ,∀x̄.A ∧ ϕ < n→ 〈m(x̄)〉B ` A ∧ ϕ = n→ 〈α〉B,∆ A ` ϕ ≥ 0

Γ ` A→ 〈m(x̄)〉B,∆
(n fresh)

(GI)
Γ, y = e ` P,∆

Γ ` P,∆
(y new)
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