Lab 2: Implementing verified hash tables

15-414: Automated program verification

Lab goals

In this lab, we have a look at how to write verified data structures using type invariants.
After studying a commented example, you will have to write a provably correct implemen-
tation of hash tables in Why3.

Lab instructions

Although we completed this lab without writing any additional helper lemma or code
assertion, it should definitely put more pressure on automated provers. Therefore, we
advise you to keep your code and your invariants as simple and clean as possible to reduce
overhead. You are also urged to complete Part 1 as soon as possible, and visit one of the

course staff’s office hours if you struggled to do this.

If you come to office hours with Part 1 completed at least one week before the deadline,
the course staff will be able to help you correct serious flaws in your approach much more
effectively, and your final grade is likely to be significantly higher. Even if you did not
completely solve the first part, you should still come to office hours where we will give you
feedback on your current solution. The purpose of the voluntary “check-in” is to detect

any early errors and to help you to successfully write verified hash tables.

Important note: If you are in need of this assistance with the lab, we recommend you
to email the instructor/TA from the office hour that you are planning to attend. This will
help us to coordinate additional office hours if needed. If none of the current office hours

work for you, please let us know and we will arrange an alternative time.

1 An example of a verified data structure

1.1 Definition and type invariants

Let’s illustrate how to design verified data structures in Why3 with a toy example. Let’s
say we want to implement potentially infinite arrays that represent functions from the non-
negative integers to some set of values. Such dynamic arrays could be initialized without
any size attribute to some constant function and the underlying representation would grow
dynamically as elements are modified. You can find Figure [I] the Why3 type definition for

dynamic arrays.

type dyn_array = {
default: int ;
mutable data: array int ;
ghost mutable model: map int int }
invariant {
forall i:int. O <= i < length data —>
Map.get model i = datalil] }
invariant {
forall i:int. i >= length data ->
Map.get model i = default }
by { default = 0 ; data = Array.make O O ; model = const O }

Figure 1: The type of dynamic arrays in Why3

As you can see, the type of dynamic arrays is a record typeﬂ with three fields:

e The field default corresponds to the value at which every cell of the dynamic array
has been initialized. As opposed to the other fields, it is not declared as being

mutable, which means that its value cannot change after being first setE]

e The field data is the concrete representation of the segment of the dynamic array

'Records in ML correspond to structures in C.
2In languages of the C family, fields and variables are mutable by default and can be declared as being

immutable using keywords like const. In ML, we have the opposite convention.

that has been modified since initialization.

e More interestingly, the field model corresponds to an abstract representation of the
content of the dynamic array. It is marked as a ghost field, which means that it only
serves verification purposes and should be eliminated during compilation (more on
this later). In Why3, map « f refers to the type of mathematical functions from
values of type a to values of type 8. Therefore, model is a function from integers
to values. The fact that this abstract representation is consistent with the concrete
representation of dynamic arrays (the data and default fields) is expressed by two

type invariants.

Type invariants In Why3, a type 7 can be annotated with type invariants. If J is

declared as an invariant for 7, then:
e It has to hold for any instance of 7 that is passed to (or returned by) a function.

e Any function f should preserve J in the sense that J must hold on f’s arguments of
type 7 when f returns if it did when f was called. Type invariants can be temporarily
violated in the body of f though.

By keyword The by clause ensures the non-vacuity of this type with invariants. If you
omit it, a goal with an existential statement is generated which may be challenging for

automated provers.

Maps in Why3 In Why3, mathematical functions can be represented using the map type
that is exported by the map.Map and map.Const modules from the standard library. This

type can be used as follows:
e The constant function that maps any value to v is written const v.

e If f is a function, the image f(x) of z by f is written Map.get f x. Besides, the
function f{z — v} that only differs from f in x where it has value v is written

Map.set f x v.

In fact, you should already be familiar with the map type because you used it in class to

model arrays in dynamic logic.

On specifying and verifying data structures What does it mean for a data structure
to be correctly implemented? Surely, it means that its implementation matches some
specification but how would we specify a data structure in the first place? A standard way

to proceed is as follows:

e We define an abstract representation of the data structure as a mathematical object,
in our case a function from integers to values. We call this representation the model

of the data structure.

e We make this representation a ghost field in the data structure’s type definition. A
ghost field is a field whose only purpose is to serve verification and that is eliminated
when compiling WhyML code to normal ML codeﬂ As a consequence, any expression
accessing a ghost field becomes ghost code and it cannot modify non-ghost variables
or fields.

e Functions manipulating the data structure are specified using its model. For exam-
ple, the dyn_set function that modifies a cell of a dynamic array has the following

specification:

let dyn_set (d : dyn_array) (i : int) (v : int) : unit =
requires { i >= 0 }

ensures { d.model = Map.set (old d.model) i v }

e Type invariants are used to enforce consistency between the abstract model of a data
structure and its concrete representation. In our case, the dyn_array type declares

two invariants:

— Its model coincides with its data field within the bounds of the latter:

forall i:int. 0 <= i < length data ->
Map.get model i = datalil
— Outside the range of its data field, its model is a constant function that is equal

to the value of its default field:

forall i:int. i >= length data ->
Map.get model i = default

3This also explains why ghost fields and variables can contain abstract mathematical objects for which

there is no computer representation.

1.2 Implementation

The full implementation of dynamic arrays is shown Figure 2] Here are a few remarks

about it:

e The dyn_make function creates a new dynamic array. Notice how the curly brackets
syntax is used to create a new record of type dyn_array with some given initial value

for every field. Also, notice how the type invariants of dyn_array hold for this record.

e The dyn_resize function is for internal use and reallocates the underlying represen-
tation of a dynamic array to make it bigger, without impacting its model. Note that
the annotation “ensures { d.model = old d.model }” is optional as Why3 would
be smart enough to generate it implicitly after noticing that the model field of 4 is
never reassigned in the function body. Finally, remember the syntax for updating a
mutable field of a record (<-).

e Notice how the dyn_set and dyn_get functions are specified using only the abstract

model of the dynamic array they manipulate.

Exercise Download the file corresponding to this example (“dyn_array.mlw”) on the class
website and open it with the Why3 IDE. Split every goal and try to understand what every
resulting proof obligation stands for. (You do not have to return this file but we encourage

you to do this exercise).

let dyn_make (v: int) : dyn_array =

{ default = v ; data = Array.make O v ; model = const v }

let dyn_resize (d : dyn_array) (n : int) : unit
requires { n > length d.data }
ensures { d.model = old d.model } (* Optional *)
n }

ensures { length d.data

let new_data = Array.make n d.default in
let k = length d.data in
for i = 0 to k - 1 do

invariant { forall j. 0 <= j < i -> new_datal[j]

d.datalj] }
d.default }

invariant { forall j. k <= j < n -> new_datal[j]
new_datal[i] <- d.datali]
done ;

d.data <- new_data

let dyn_set (d : dyn_array) (i : int) (v : int) : unit =
requires { i >= 0 }
ensures { d.model = Map.set (old d.model) i v }
if i >= length d.data then dyn_resize d (i + 1) ;
d.datal[i] <- v ;
d.model <- Map.set d.model i v

let dyn_get (d : dyn_array) (i : int) : int =
requires { i >= 0 }
ensures { result = Map.get d.model i }

if i < length d.data then d.datal[i] else d.default

Figure 2: Implementation of dynamic arrays

2 Lab instructions

2.1 Installing CVC(C4, learning about strategies

This lab should put more stress on automated provers. Therefore, it is useful to install an

additional one that is strong in some cases where Alt-Ergo and Z3 are not:

e CVC4: this prover is quite similar to Z3. It is not as good with arithmetic but
seems to handle recursive predicates (list membership for example) better. In order

to install it on Linux, just run:
sudo apt-get install cvc4.

On MacOs, follow the instructions on this page: http://cvcd.cs.stanford.edu/
downloads/builds/macos/ports/.

Then, run
why3 config --detect-provers

and make sure that the new prover you installed is detected.

It may also be useful to learn a bit more about the automated proof strategies that
Why3 offers, which perform smart transrofmations on proof obligations while calling mul-
tiple provers in parallel. You are strongly encouraged to make use of these in this lab.
When opening Why3 IDE, you should see three new buttons that are labeled from “Auto
0”7, “Auto 1” and “Auto 2”. In particular, “Auto 2” may be able to prove some goals that
cannot be discharged by calling provers directly. You can have a look at the documentation

of these strategies here:
http://why3.1ri.fr/doc-1.2.1/technical.html#sec109

You may notice that Auto 2 refers to two additional provers that we have not mentioned:
Eprover and SPASS. Support for these provers across all platforms is limited, and you
should be able to complete this lab without them. Feel free to download and try them out,
but do not hand in a session with proofs completed by these provers, as the autograder

will not have them, and we will not be able to check your work.

http://cvc4.cs.stanford.edu/downloads/builds/macos/ports/
http://cvc4.cs.stanford.edu/downloads/builds/macos/ports/
http://why3.lri.fr/doc-1.2.1/technical.html#sec109

2.2 Getting familiar with the template

We show Figure 3] a part of the template for this homework. Our implementation of hash
tables works with a type key that is defined to be of type int and a function hash that
must have the property that its result is always positive. In this case we use the function
that returns the absolute value of a number (which was used in LiveLab0).

Our hash tables have the following properties:

e The abstract model of a hash table is a partial function from keys to values. More

precisely, it has type:
type model = map key (option int).

That is, the abstract model of a hash table ¢ is a map f; such that f;(k) = Some v if

key k is associated to value v in ¢ and f;(k) = None if k£ does not belong to t.

e Concretely, a hash table is an array of n buckets, where a bucket is an association
list, that is a list of key-value pairs. The i** bucket of the table only contains keys

whose hash is equal to ¢ modulo n.

e A hash table also maintains an estimate of how many elements it contains in field
size. This is useful to detect when the table is getting saturated and thus should
be reallocated with more buckets. In this lab, we do not ask you to prove that the
content of the size field is accurate. This is not a huge deal as failing to update
it correctly may lead to a slow implementation but never to a functionally incorrect

one.

A note on let versus function: Functions introduced by the “function” keyword are
pure functionﬂ that can be used in both specification and code whereas functions intro-
duced by “let” can only be used in code. Another difference is that functions introduced
by the “function” keyword cannot be annotated but the provers can access their body.
In contrast, functions introduced by the “let” keyword are black boxes that are only seen

by provers through their specification.

4In the sense that they cannot mutate some state or perform any side effects. There are many other
limitations on what functions can be defined using the “function” keyword. For example, they cannot

feature loops.

type key = int

let function hash (k: key) : int =
ensures { k >= 0 -> result = k }
ensures { k < 0 -> result = -k }
if k >= 0 then k

else -k
lemma hash_nonneg: forall k: key. O <= hash k
function bucket (k: key) (m: int) : int = mod (hash k) n
lemma bucket_bounds:

forall n: int. 0 < n >
forall k: key. O <= bucket k n < n

type bucket = list (key, int)

type data = array bucket

type model map key (option int)
type hashtbl = {

mutable size: int ;

mutable data: data ;

ghost mutable model: model }
invariant { ... }
by { ... }

Figure 3: A part of the template for this lab

2.3 Partl

In this first part, you have to write down invariants for the hashtbl datatype and implement
a few basic functions on hash tables. You do not have to reallocate the table with more
buckets when it gets saturated, as this is the object of Part II. You should try to finish

Part I before asking for assistance during office hours.

1. Write down type invariants for hash tables, in such a way that any record satisfying
them must correspond to a valid representation of a hash table. As mentioned earlier,
we do not require field size to be consistent. Besides, we recommend that you allow
buckets to contain duplicates. You may have to come back to this question as you
progress in the lab, as missing an invariant may cause parts of your implementation

to be unprovableﬁ

2. Specify and implement a function create that takes a positive integer n as an argu-
ment and creates a new hash table with n buckets. See the corresponding signature

in the template file.

3. Specify and implement a function bucket_find to find the value corresponding to
a key in a bucket. Use it to specify and implement a function find that finds the
value associated to a given key in a hash table. See the corresponding signatures in

the template file.

4. Specify and implement a function bucket_remove to remove a key along with the
corresponding value from a bucket. Use it to specify and implement a function remove

that removes a key along with the associated value in a hash table.

5. Specify and implement a function add_new that adds a key-value pair (k, v) to a hash
table under the hypothesis that k does not already belong to it. Use it to specify and
implement a function add that adds a key-value pair (k, v) to a hash table, overwriting

an already existing pair featuring k if needed.

5By the way, even if your type invariants are complete, it is sometimes useful to add an invariant P that
is redundant in the sense that it is implied by another invariant (). Indeed, proving that @ is an invariant

may be much easier for automated provers than proving the P — @ implication.

10

2.4 PartII

For the operations on a hash table to be efficient (amortized constant time), the number
of elements in it should not exceed its number of bucketsﬂ To preserve this property, it
may have to be dynamically reallocated with more buckets. In this part, we implement a

new version of add that performs such reallocation when necessary.

1. Specify and implement a resize function that takes a hash table with n buckets as
an argument and reallocates it so that it features 2n + 1 buckets, without changing

its content (i.e. its abstract model). Here are some advice:

e We recommend that resize ¢ creates a new empty hash table ¢’ with the right
number of buckets and adds every key-value pair of ¢ into it using the existing
add function, before overwriting the data field of ¢ with the one of . You can

look at the example in section [L.2] for inspiration.

e Once again, Why3 only enforces type invariants when a function is called and
when it returns. In particular, the only way to convince provers that a type
invariant holds after a loop given that it held before and is preserved by each
iteration is to write an explicit loop invariant about this fact. To do this we
suggest to create a predicate valid_hashtbl that will check the validity of the

invariants of a hash table.

2. We define the predicate
non_saturated (t : hashtbl) = t.size <= length t.data.

Specify and implement an insert function that is similar to add, except that it
comes with the additional guarantee that it preserves the non saturated character of

its argument:

let insert (t : hashtbl) (k : key) (v : int) : unit =

ensures { non_saturated (old t) -> non_saturated t }

In doing so, you may have to enrich the specification of previously defined functions.

50r at least not by more than a small constant factor.

11

What to hand back

First make sure that every goal is handled successfully by the provers in your completed
version of 1lab2.mlw. Labs should be submitted on the course Canvas website, under the
Lab2 assignment. Upload a zip file named AndrewID_lab2.zip, using your Andrew ID. The

zip archive should contain the following content:

1. The completed lab2.mlw file
2. The session folder generated by Why3 IDE

3. An Asci text file with extension .txt or a .pdf file containing some comments you

may want to share with us (optional).

In order to make sure your archive is valid, you can uncompress it and run the following

two commands (we will do the same):

why3 replay lab2 # should print that everything replayed 0K

why3 session info --stats lab2 # prints the list of unproved goals

Note Having all your proof goals checked does not necessarily mean that you will get a
perfect grade on your homework. Indeed, you also have to make sure that your specifica-
tions are correct and complete. For example, it doesn’t help if everything proves but you

assumed precondition false everywhere.

12

3 Some tricks on using Why3

3.1 Proving methodology

The question you will find yourself asking most often while using Why3 is the following:

why the hell didn’t this goal prove? There are three possible answers to this question:

1. The goal you are attempting to prove is false, which means there is an error in either

your implementation or your specification.

2. The goal you are attempting to prove is unprovable because you missed an invariant
or because some part of your implementation is underspecified. In the latter case,
this means that you are missing a requires in the current function or that you are
making a call to a function whose behavior is underconstrained (some ensures are
missing). You have to keep in mind that, when looking at a function call, the provers

have no access to this function’s body and only see its specification.

3. The goal you are attempting to prove is true but the provers are not smart enough

to figure it out. You will need to annotate your code more.
Here is a list of what you should do when one of your goals does not check:

1. Launch the “Auto 2”7 strategy, which will split your goal automatically if needed.
Look at what exact subgoals fail to be proved and what part of the code they corre-
spond to (using the Source tab of the Why3 IDE).

2. If a subgoal G fails to be proved automatically, think of a proof of GG yourself. Then,
write down each argument or intermediate step in proving G as an assertion in the

code and see what assertions fail to check.

3. If the subgoal that fails to be proved is small and simple enough, you can look at
the Task tab of Why3 IDE to see the exact proof obligation that has been sent to
the provers. A red flag indicating that it may be unprovable is when the conclusion

features a variable that is almost unconstrained in the hypotheses.

4. If you manage to decompose your reasoning in many small steps using assertions,

you should eventually reach a point where it becomes clear that either:

(a) the main goal is indeed wrong: you should fix your implementation or your

specification.

13

(b) the main goal is unprovable: you should add some invariant, requires or

ensures annotations.

(c) the provers are missing some piece of subtle reasoning and you should help them
by providing external lemmas. Note that we were able to solve every Why3 lab

without running into this[’]

In our experience though, when a goal does not check and it does not feature some crazy

mathematical content, you are more likely to have missed something than the provers!

3.2 Other various trick

e Although the “Auto 2” strategy is powerful, it is quite slow and so you should not
use it as a first attempt to prove a goal. After running it successfully, it is often useful

to use the “Clean” button of the Why3 IDE to remove unsuccessful proof attempts.

e It is sometimes useful to write a type or loop invariant P that is redundant in the
sense that it is implied by another invariant (). Indeed, proving that () is an invariant

may be much easier for automated provers than proving the P — () implication.

"with one exception in the last lab that we will discuss later.

14

	An example of a verified data structure
	Definition and type invariants
	Implementation

	Lab instructions
	Installing CVC4, learning about strategies
	Getting familiar with the template
	Part I
	Part II

	Some tricks on using Why3
	Proving methodology
	Other various trick

