
Lab 1: 4 Why you get to know Why3

15-414: Automated program verification

Lab goals

This lab is designed to help you getting started with Why3 by specifying and implementing

simple algorithms. This handout features commented examples. You should read them

carefully as they demonstrate pieces of Why3’s syntax and semantics that you will need

for completing the exercises.

Lab instructions

First download the template file lab1.mlw on the class website. It is divided in five sections

corresponding to five different exercises. Each exercise has a template in comments with

holes (* “...” *). You should uncomment those lines (by removing the lines “(*” and

“*)”) and fill the holes (“...”) in order to complete the homework. Here are some general

remarks before we give detailed instructions for each exercise.

Remarks

• It is possible to complete every exercise without importing additional modules and

theories from the Why3 standard library but you are free to do otherwise.

• You are encouraged to extend the template we give you with additional predicates

and auxiliary functions, especially when it helps clarity.

• If you try to launch the Why3 IDE on a file that is not syntactically correct, it will

print an error and fail. Therefore, we recommend you to uncomment and solve each

exercise one by one.
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Example 1: loops and mutable references

Our first example is taken from the live coding session and can be found Figure 1. It should

teach you how to work with while loops and mutable references.

use int.Int

use ref.Ref

let square (x:int) : int =

requires { 0 <= x }

ensures { result = x * x }

let s = ref 0 in

let i = ref 0 in

while !i < x do

invariant { !s = !i * !i }

invariant { !i <= x }

variant { x - !i}

s := !s + 2 * !i + 1;

i := !i + 1

done;

!s

Figure 1: Find the square of a number by using only addition

Mutable references Remember that in ML, variables are immutable by default. In

order to have mutable memory cells, you should use references (from ref.Ref). References

are created using the “ref” keyword, accessed using the “!” operator and modified using

“:=”.

Proving correctness with loop invariants In order to prove the correctness of func-

tions featuring loops, it is critical to declare loop invariants. A loop invariant is a formula

P for which we can prove that:
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1. Invariant initiation: P is true before the loop is entered.

2. Invariant preservation: whenever P is true before executing the loop body, it

remains true after.

When the two properties above are true, P is also true after the loop execution. The

provers only have access to the following information about the state of a program after a

loop: 1

• The loop guard is false.

• Loop invariants are true.

• Variables that appear to be never modified by the loop body have the same value

before and after the loop.

In particular, any variable that is modified in the loop body should be mentioned in an

invariant. Otherwise, the provers will have no information about its value after the loop.

Proving termination with loop variants To guarantee termination, a while loop

must be attached a variant declaration that provides an integer expression that can be

proven to be nonnegative and strictly decreasing at every loop iteration.

Mentioning the result of a function in its specification The result keyword can

be used in specifications to denote the result of the function being specified.

1If you are unsure whether or not some formula can be deduced from these informations, add an assertion

after the loop body and see whether or not it checks.
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Exercise 1: computing the nth Fibonacci number

The goal of this exercise is implement a verified function compute fib that computes the

nth Fibonacci number in time linear with n. Because the Fibonacci sequence is not defined

in the Why3 standard library, we have to axiomatize it ourselves. This is done in the

template file as follows:

function fib int : int

axiom fib_0: fib 0 = 0

axiom fib_1: fib 1 = 1

axiom fib_n: forall n:int. n >= 2 -> fib n = fib (n-1) + fib (n-2)

This code introduces an abstract function symbol fib and provides three defining axioms

for it.

Instructions

1. Fill in the body of compute fib (the specification is already provided in the template

file). Your implementation must be non-recursive and have linear time complexity.

2. Make sure that the generated verification conditions for compute fib are successfully

checked by an automated prover using the Why3 IDE. As Alt-Ergo is bad at dealing

with arithmetic, we advise that you use Z3 instead. 2

2Even though Alt-Ergo is bad at dealing with arithmetic, we were able to use it to check the verification

conditions of our solution implementation.
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Example 2: lists and recursive functions

Our second example is taken from Lab 0 and can be found Figure 2. It should teach you

how to work with lists and define recursive functions.

use int.Int

use list.List

use list.Mem (* Theory of list membership *)

let rec remove (a : int) (l : list int) : list int =

ensures { not (mem a result) }

ensures { forall x:int. x <> a -> (mem x result <-> mem x l) }

variant { l }

match l with

| Nil -> Nil

| Cons x xs ->

if x = a then remove a xs

else Cons x (remove a xs)

end

Figure 2: Removing every instance of an element from a list

Working with lists Lists in WhyML work exactly like in SML, and they are defined as

follows in the standard library 3 (in module list.List):

type list ’a = Nil | Cons ’a (list ’a)

. Lists are built using the Nil and Cons constructors 4 and examined through pattern

matching. Because lists are defined as a recursive datatype, functions manipulating them

are usually recursive.

3The documentation of the standard library is available at http://why3.lri.fr/stdlib/.
4There is no “[]” and “::” syntactic sugar for lists in WhyML.
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Writing variants In order to guarantee termination, every definition of a recursive func-

tion should be accompanied by a variant declaration. A variant can be either:

• The name of a list argument l such that every recursive call is made on a sublist of l

(this is the case in the example of Figure 2).

• An integer expression for which we can prove that it is nonnegative and it strictly

decreases at each recursive call.

Proving recursive functions correct You may find it surprising that checking the

correctness of remove in Figure 2 does not require adding any code annotation in addition

to the specification. Indeed, verifying functions featuring loops usually requires manually

writing loop invariants. Why would recursive functions require no additional annotations,

especially since loops can be emulated using recursion ? The answer is that in the case

of recursive functions, the specification (requires and ensures statements) also serves as

a recursive invariant. For example, in Figure 2, provers can use the hypothesis that the

postcondition of remove holds for every recursive subcalls when proving that it holds after

its main body. You are encouraged to see this by yourself using the Task tab of the Why3

IDE.

Other details you should pay attention to:

• How pattern matching is used on lists using the “match . . . with” construct.

• The keyword rec has to be used with let when defining recursive functions.

• The predicate mem is imported from the standard library (list.Mem) and refers to

list membership.
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Exercise 2: generating a list of all integers in an interval

The goal of this exercise is to specify and implement a recursive function range that takes

two integers a and b with a ≤ b and returns a list containing every integer in the [a, b)

interval.

Instructions

1. Write a specification for range by filling in the holes within the requires and

ensures statements. The specification should use the mem list membership predi-

cate in list.Mem and state something like: an integer belongs to the resulting list if

and only if it belongs to the [a, b) interval. Note that your specification only needs

to cover the existence of integers in the [a, b) interval and does not need to enforce

any restrictions on duplicated or unordered integers.

2. Write the implementation of range.

3. Provide a variant for range

4. Make sure that the generated verification conditions for range are successfully checked

by an automated prover using the Why3 IDE.
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Example 3: arrays, loops and and exceptions

Our third and final example is taken from Lab 0 and is displayed in Figures 3 and 4. It

should teach you how to work with arrays, for loops and exceptions. It consists in two

different implementations of a function that computes the index of the first positive number

in an array of integers when it exists and returns None otherwise.

Option type Option types are defined as follows in option.Option, in a similar way

than in SML:

type option ’a = None | Some ’a

In Figure 3, the find_first_pos_idx function returns a value of type option int instead

of an int to account for the case where the array given in argument contains no positive

value.

Arrays Arrays are defined in the array.Array module from the standard library, whose

documentation is available at:

http://why3.lri.fr/stdlib/array.html

The expression “make n v” creates an array of n cells that are initialized to value v.

Besides, “length t” denotes the length of array t. Arrays can be accessed using the

“t[i]” notation and modified using the “t[i] <- v” notation. Every time an array is

modified or accessed at a given index, Why3 generates a proof obligation to ensure that

this index is not out of range. Finally, you should know that the equality operator “=”

does not work for arrays. In order to express the fact that two arrays t and t’ are equal,

you should write:

length t = length t’ /\ forall i:int. 0 <= i < length t -> t[i] = t’[i]

or use the predicate array_eq that is defined in array.ArrayEq.

Initial values One important thing to notice about these examples is the last postcon-

dition:

ensures { array eq t (old t) }
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Within a postcondition, old t refers to the value of t in the prestate, i.e., the state in

which the precondition is evaluated. This part of the specification documents the fact that

the array given to the procedure remains unchanged throughout its execution, to the point

of return.

Because arrays are mutable, the rest of the specification could easily be satisfied by an

incorrect implementation if we did not include this part of the spec. It is good to get into

the habit of documenting the effect that a procedure will have on mutable state such as

arrays, even in the simplest cases where that state remains unchanged.

Exceptions As there are no break or return statements in ML, it is idiomatic to use

exceptions for escaping loops or functions. Exceptions can be declared using the keyword

exception, raised using raise and caught within “try . . . catch” blocks.

For loops Unsurprisingly, for loops are very similar to while loops, except that it is

not required to provide a variant for them.
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use array.Array

use array.ArrayEq

use ref.Ref

use option.Option

predicate none_pos_sub (t : array int) (a b : int) =

forall i:int. a <= i < b -> t[i] <= 0

predicate none_pos (t : array int) = none_pos_sub t 0 (length t)

predicate first_pos_at (t : array int) (ix : int) =

0 <= ix < length t /\ t[ix] > 0 /\ none_pos_sub t 0 ix

let find_first_pos_idx (t : array int) : option int =

ensures { result = None -> none_pos t }

ensures { forall ix:int. result = Some ix -> first_pos_at t ix }

ensures { array_eq t (old t) }

let v = ref None in

let i = ref 0 in

while !i < length t && is_none !v do

variant { length t - !i }

invariant { 0 <= !i }

invariant { forall ix:int. !v = Some ix -> first_pos_at t ix }

invariant { !v = None -> none_pos_sub t 0 !i }

if t[!i] > 0 then v := Some !i ;

i := !i + 1

done ;

!v

Figure 3: Finding the index of the first positive element in an array of integers
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exception Found int

let find_first_pos_idx’ (t : array int) : option int =

ensures { result = None -> none_pos t }

ensures { forall ix:int. result = Some ix -> first_pos_at t ix }

ensures { array_eq t (old t) }

try

for i = 0 to length t - 1 do

invariant { none_pos_sub t 0 i }

if t[i] > 0 then raise (Found i)

done ;

None

with Found ix -> Some ix end

Figure 4: An alternative implementation using a for loop that raises an exception
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Exercise 3: finding the maximum element in an array of integers

In this exercise, we want you to specify and implement a function max_array that finds

the maximum element in an array of integers. It should raise the exception Empty when

given an empty array as an argument.

Instructions

1. Write a specification for max array. It has to be complete in the sense that it should

rule out any incorrect implementation.

2. Fill in the implementation of max array and make sure that the generated verification

conditions are successfully checked by an automated prover using the Why3 IDE.

Note: The template file features the declaration

raises { Empty -> length t = 0 }

as part of the specification for max_array. Indeed, every function that may raise an

uncaught exception must declare a post-condition for it. In our case, the declaration above

tells Why3 that when a call to “max array t” raises exception Empty, it has to be true

that t is the empty array.

Exercise 4: finding the maximum element in a list of integers

In this exercise, we want you to specify and implement a function max_list that finds the

maximum element in a list of integers. It should raise the exception Empty when given an

empty list as an argument.

Instructions

1. Write a specification for max list. It has to be complete in the sense that it should

rule out any incorrect implementation.

2. Fill in the implementation of max list and make sure that the generated verification

conditions are successfully checked by an automated prover using the Why3 IDE.
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Exercise 5: finding the maximum element in a list of integers

In this exercise, we want you to specify and implement a function smallest greater than

that:

• takes as an argument an array of integers t that is sorted in increasing order, along

with an integer b

• returns the smallest element in t that is strictly greater than b (and None if no such

element exists).

Instructions

1. Write a specification for smallest greater than. It has to be complete in the sense

that it should rule out any incorrect implementation.

2. Write an implementation for smallest greater than and make sure that the gen-

erated verification conditions are successfully checked by an automated prover using

the Why3 IDE. For bonus points, your implementation should have logarithmic

time complexity.

13



What to hand back

First make sure that every goal is handled successfully by the provers in your completed

version of lab1.mlw. Labs should be submitted on the course Canvas website, under the

Lab1 assignment. Upload a zip file named AndrewID lab1.zip, using your Andrew ID. The

zip archive should contain the following content:

1. The completed lab1.mlw file

2. The session folder generated by Why3 IDE

3. An ascii text file with extension .txt or a .pdf file containing some comments you

may want to share with us (optional).

In order to make sure your archive is valid, you can uncompress it and run the following

two commands (we will do the same):

why3 replay lab1 # should print that everything replayed OK

why3 session info --stats lab1 # prints the list of unproved goals

Note Having all your proof goals checked does not necessarily mean that you will get a

perfect grade on your homework. Indeed, you also have to make sure that your specifica-

tions are correct and complete. For example, it doesn’t help if everything proves but you

assumed precondition false everywhere.

Some tricks and advice on using Why3

The question you will find yourself asking most often while using Why3 is the following:

why the hell didn’t this goal prove?. There are three possible answers to this question:

1. The goal you are attempting to prove is false, which means there is an error in either

your implementation or your specification.

2. The goal you are attempting to prove is unprovable because you missed an invariant

or because some part of your implementation is underspecified. In the latter case,

this means that you are missing a requires in the current function or that you are

making a call to a function whose behavior is underconstrained (some ensures are

missing). You have to keep in mind that, when looking at a function call, the provers

have no access to this function’s body and only see its specification.
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3. The goal you are attempting to prove is true but the provers are not smart enough

to figure it out. You will need to annotate your code more.

Here is a list of what you should do when one of your goals does not check:

1. Always start by splitting your goal and launch both Alt-Ergo and Z3 on every

generated subgoal. Look at what exact subgoals fail to be proved and what part of

the code they correspond to (using the Source tab of the Why3 IDE).

2. If a subgoal G fails to be proved automatically, think of a proof of G yourself. Then,

write down each argument or intermediate step in proving G as an assertion in the

code and see what assertions fail to check.

3. If the subgoal that fails to be proved is small and simple enough, you can look at

the Task tab of Why3 IDE to see the exact proof obligation that has been sent to

the provers. A red flag indicating that it may be unprovable is when the conclusion

features a variable that is almost unconstrained in the hypotheses.

4. If you manage to decompose your reasoning in many small steps using assertions,

you should eventually reach a point where it becomes clear that either:

(a) the main goal is indeed wrong: you should fix your implementation or your

specification.

(b) the main goal is unprovable: you should add some invariant, requires or

ensures annotations.

(c) the provers are missing some piece of subtle reasoning and you should help them

by providing external lemmas. Note that we were able to solve every Why3 lab

without running into this. 5

In our experience though, when a goal does not check and it does not feature some crazy

mathematical content, you are more likely to have missed something than the provers!

5with one exception in the last lab that we will discuss later.
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