
Assignment 4: Imperative Procedures & Decision Procedures
15-414/15-424 Bug Catching: Automated Program Verification

Due: 11:59pm, April 5
Total Points: 50

1. Partially incorrect (15 points). Consider the following rule for dealing with recursive procedure
contracts, which allows the assumption that recursive calls within a procedure body satisfy the contract
to prove partial correctness of the procedure.

(rrecs)
Γ,@x1, . . . , xn.AÑ rmpqsB $ AÑ rαsB,∆

Γ $ AÑ rmpqsB,∆
pα is body of m, x1, . . . , xn used in αq

Is this rule sound? If so, prove it either by derivation or by giving a semantic argument. It it is not
sound, then provide a counterexample proof that is uses this rule, but is unsound (i.e., comes to a false
conclusion).

2. Exploding formulas (10 points). A formula is in Disjunctive Normal Form (DNF) if it is a
disjunction of conjunctive clauses. That is, for a set of literals `ij , the formula is of the form:

ª
i

�©
j

`ij

�

An arbitrary propositional formula can be converted to DNF by eliminating double negations, applying
De Morgan’s law, and distributive rules. Describe a propositional formula containing n literals that is
of size linear in n, but whose equivalent DNF has at least 2n clauses. For full credit, be sure to explain
why the formula explodes in size by describing how it is transformed to DNF, and how many clauses
are generated.

3. Pigeonhole SAT (15 points) The pigeonhole problem asks us to find a one-to-one mapping between n
pigeons and m holes. Obviously, this isn’t possible when n ¡ m. Consider an encoding of this problem
as SAT for n pigeons and n � 1 holes, where we have the following CNF clauses and propositional
variables pij which assert that pigeon i is placed in hole j.

• Pigeon clauses: For each pigeon 1 ¤ i ¤ n, assert that it is placed in some hole.

pi,1 _ . . ._ pi,n�1

• Hole clauses: For each hole 1 ¤ j n and each pair of pigeons 1 ¤ i k ¤ n, these two pigeons
aren’t placed in the same hole:

 pi,j _ pk,j

First, write down a CNF for the pigeonhole problem for n � 3. Then, apply the DPLL algorithm with
clause learning to the formula. You should write down the steps of your evaluation in the following
form:

(1) Decide p

(2) Unit propagate q from clause C2

(3) Decide r

(4) Unit propagate s from clause C1

(5) Conflicted clause C1

(6) Learn conflict clause p_ r

(7) ...

You are free to generate conflict clauses using any of the methods described in Lecture 13 1, but you
should explain how you find them.

4. Positive reasoning (10 points) The DPLL(T) algorithm given on page 8 of Lecture 14 constructs a
conjunctive T -formula to send to the theory solver using an interpretation returned by the SAT solver
as follows:

ψ � B�1

�
n©

i�1

Pi Ø IpPiq

�

A potential optimization would be to replace this step with one that only sends the conjunction of
theory literals that the SAT interpretation assigns true:

ψ � B�1

�
� ©

ti:IpPiq�trueu

Pi

�

Unfortunately, this is not sound. Give an example formula for which this optimization would reduce
the number of times DPLL(T) must iterate, but would cause it to yield an incorrect answer.

1Available at https://www.cs.cmu.edu/~15414/lectures/13-dpll.pdf

https://www.cs.cmu.edu/~15414/lectures/13-dpll.pdf

