Assignment 4: Imperative Procedures \& Decision Procedures 15-414/15-424 Bug Catching: Automated Program Verification

Due: 11:59pm, April 5
Total Points: 50

1. Partially incorrect (15 points). Consider the following rule for dealing with recursive procedure contracts, which allows the assumption that recursive calls within a procedure body satisfy the contract to prove partial correctness of the procedure.

$$
([\mathrm{rec}]) \frac{\Gamma, \forall x_{1}, \ldots, x_{n} \cdot A \rightarrow[\mathrm{~m}()] B \vdash A \rightarrow[\alpha] B, \Delta}{\Gamma \vdash A \rightarrow[\mathrm{~m}()] B, \Delta} \quad\left(\alpha \text { is body of } \mathrm{m}, x_{1}, \ldots, x_{n} \text { used in } \alpha\right)
$$

Is this rule sound? If so, prove it either by derivation or by giving a semantic argument. It it is not sound, then provide a counterexample proof that is uses this rule, but is unsound (i.e., comes to a false conclusion).
2. Exploding formulas (10 points). A formula is in Disjunctive Normal Form (DNF) if it is a disjunction of conjunctive clauses. That is, for a set of literals $\ell_{i j}$, the formula is of the form:

$$
\bigvee_{i}\left(\bigwedge_{j} \ell_{i j}\right)
$$

An arbitrary propositional formula can be converted to DNF by eliminating double negations, applying De Morgan's law, and distributive rules. Describe a propositional formula containing n literals that is of size linear in n, but whose equivalent DNF has at least 2^{n} clauses. For full credit, be sure to explain why the formula explodes in size by describing how it is transformed to DNF, and how many clauses are generated.
3. Pigeonhole SAT (15 points) The pigeonhole problem asks us to find a one-to-one mapping between n pigeons and m holes. Obviously, this isn't possible when $n>m$. Consider an encoding of this problem as SAT for n pigeons and $n-1$ holes, where we have the following CNF clauses and propositional variables $p_{i j}$ which assert that pigeon i is placed in hole j.

- Pigeon clauses: For each pigeon $1 \leqslant i \leqslant n$, assert that it is placed in some hole.

$$
p_{i, 1} \vee \ldots \vee p_{i, n-1}
$$

- Hole clauses: For each hole $1 \leqslant j<n$ and each pair of pigeons $1 \leqslant i<k \leqslant n$, these two pigeons aren't placed in the same hole:

$$
\neg p_{i, j} \vee \neg p_{k, j}
$$

First, write down a CNF for the pigeonhole problem for $n=3$. Then, apply the DPLL algorithm with clause learning to the formula. You should write down the steps of your evaluation in the following form:
(1) Decide p
(2) Unit propagate q from clause C_{2}
(3) Decide $\neg r$
(4) Unit propagate s from clause C_{1}
(5) Conflicted clause C_{1}
(6) Learn conflict clause $\neg p \vee r$
(7) ...

You are free to generate conflict clauses using any of the methods described in Lecture $13 \bigcirc$, but you should explain how you find them.
4. Positive reasoning (10 points) The DPLL(T) algorithm given on page 8 of Lecture 14 constructs a conjunctive T-formula to send to the theory solver using an interpretation returned by the SAT solver as follows:

$$
\psi \equiv B^{-1}\left(\bigwedge_{i=1}^{n} P_{i} \leftrightarrow I\left(P_{i}\right)\right)
$$

A potential optimization would be to replace this step with one that only sends the conjunction of theory literals that the SAT interpretation assigns true:

$$
\psi \equiv B^{-1}\left(\bigwedge_{\left\{i: I\left(P_{i}\right)=t r u e\right\}} P_{i}\right)
$$

Unfortunately, this is not sound. Give an example formula for which this optimization would reduce the number of times DPLL(T) must iterate, but would cause it to yield an incorrect answer.

[^0]
[^0]: ${ }^{1}$ Available at https://www.cs.cmu.edu/~15414/lectures/13-dpll.pdf

