Assignment 2: Program it Out 15-414/15-424 Bug Catching: Automated Program Verification

Due: 11:59pm, Tuesday, February 4
Total Points: 50

1. Find the precondition (10 points) Consider the following program.

$$
\alpha \equiv x:=x+1 ; ?(x>0) ; y:=y+x
$$

Your job is to find a precondition P that makes the following DL formula valid, and prove that this is the case using the axioms introduced in lecture.

$$
P \rightarrow[\alpha](x+2 y \geq 3)
$$

Be sure to explain how you arrived at your precondition. Hint: can you use the axioms directly to figure out the precondition, and reuse your work for the proof?
2. Not so fast... (15 points) In the notes for Lecture 2, we somewhat casually concluded that the following two contracts for the gcd program were equivalent.

$$
\begin{aligned}
& {[\mathrm{gcd}] \text { postdiv } \wedge[\mathrm{gcd}] \text { postgrt }} \\
& {[\mathrm{gcd}](\text { postdiv } \wedge \text { postgrt })}
\end{aligned}
$$

Justify our conclusion by showing that the box modality distributes across conjunction. That is, use the semantics of DL to prove that the following formula is valid.

$$
[\alpha] P \wedge[\alpha] Q \leftrightarrow[\alpha](P \wedge Q)
$$

3. Distributing disjunction (5 points) Unfortunately, the box does not necessarily distribute over disjunction. In particular, if we extend our language with a command that assigns an arbitrary value to a variable, as shown in the following semantics, then distributivity may not hold.

$$
\llbracket x:=* \rrbracket=\{(\omega, \nu): \text { for all variables } y \text { except } x, \nu \llbracket y \rrbracket=\omega \llbracket y \rrbracket\}
$$

That is, the only possible difference between the initial and final states after running $x:=*$ is in $\nu \llbracket x \rrbracket$; it need not be equal to $\omega \llbracket x \rrbracket$, whereas for all other variables $y, \nu \llbracket y \rrbracket=\omega \llbracket y \rrbracket$.

Give an example of a program α that makes use of this command, and a postcondition $P \wedge Q$, for which $[\alpha] P \vee[\alpha] Q$ is not equivalent to $[\alpha](P \vee Q)$.
4. New axiom (5 points) On further thought, the new command $x:=*$ from the previous problem may be useful to keep around. Design an axiom that allows you to reason about box modalities around it:

$$
([:=*]) \quad[x:=*] p(x) \leftrightarrow \ldots
$$

The right side of this equivalence should not contain a box or diamond modality, but only first-order formulas.
5. Prove it (15 points) Show that your axiom $[:=*]$ is sound by adapting the soundness proof from [:=] given in Lecture 5.

