
Assignment 5: Termination, DPLL
15-414/15-424 Bug Catching: Automated Program Verification

Due: 11:59pm, Thursday 10/12/17
Total Points: 50

1. Find the variant (5 points) In Homework 3, you proved the validity of the following formula which
states partial correctness of the gcd program.

0 ă a^ 0 ă bÑ rc :“ a; d :“ b; whilepc ‰ dq tifpc ą dq c :“ c´ d else d :“ d´ cspc “ gcdpa, bqq

Now give a variant term that is sufficient to prove the corresponding total correctness formula.

0 ă a^ 0 ă bÑ xc :“ a; d :“ b; whilepc ‰ dq tifpc ą dq c :“ c´ d else d :“ d´ cypc “ gcdpa, bqq

You do not need to give a proof, but do concisely explain why your variant term is sufficient. You may
refer to your invariant from homework 3 when justifying the invariant.

2. More variants and invariants (5 points) Consider the following program α, which finds the index
of the maximum element of an array a of length n.

i := 0;

j := n-1;

while(i ‰ j) {

if(a(i) ď a(j))

i := i + 1;

else

j := j - 1;

}

Find a loop invariant and variant term sufficient to prove the validity of the formula:

0 ă nÑ xαy p0 ď i ă n^ @k.0 ď k ă nÑ apkq ď apiqq

You do not need to show a full proof, but justify the correctness of your variant and invariant.

3. LCP: specification (5 points) Longest Common Prefix is an algorithm that is used in string search
and other text problems. Given two indices i and j into an array, the goal is to compute the longest
common prefix of the subarrays starting at i and j. That is, this returns the largest integer l such that
the first l elements after indices i and j match.

Consider the following program, which computes the longest common prefix of indices i and j for an
array a of length n:

l := 0;

while(i+l < n ^ j+l < n ^ a(i+l) = a(j+l)

l := l+1

First, write down a precondition pre and postcondition post that specifies the partial correctness of this
program. Hint: As the postcondition may be long, you might find it helpful to factor the postcondition
into predicates cppa, i, j, lq, which specifies that the subarrays of a given by i, j, l are common prefixes,
and lcppa, i, j, lq which uses cp to specify the longest common prefix.

4. LCP: variants and invariants (5 points) Now provide a loop invariant and variant term that is
sufficient to prove total correctness of the LCP program from problem 3 for the pre and postconditions
you gave. You do not need to prove them yet, but briefly justify why they are correct.



5. LCP: proof (10 points) Finally, use the axioms of dynamic logic to prove total correctness of LCP
using your specification from problem 3 and your annotations from problem 4. That is, prove the
validity of the following formula:

preÑ xl :“ 0; whilepi` l ă n^ j ` l ă n^ api` lq “ apj ` lqq l :“ l ` 1y post

6. Soundness of Kx¨y (5 points) We discussed the modal modus ponens axiom Kx¨y:

(Kx¨y) rαspP Ñ Qq Ñ pxαyP Ñ xαyQq

We used this to derive the inv2var rule, which is immensely useful as it allows us to use a previously-
proved invariant property in our diamond proofs for convergence. Prove the soundness of Kx¨y.

7. Pigeonhole SAT (10 points) The pigeonhole problem asks us to find a one-to-one mapping between n
pigeons and m holes. Obviously, this isn’t possible when n ą m. Consider an encoding of this problem
as SAT for n pigeons and n ´ 1 holes, where we have the following CNF clauses and propositional
variables pij which assert that pigeon i is placed in hole j.

• Pigeon clauses: For each pigeon 0 ď i ď n, assert that it is placed in some hole.

pi,1 _ . . ._ pi,n´1

• Hole clauses: For each hole 0 ď j ă n and each pair of pigeons 0 ď i ă k ď n, these two pigeons
aren’t placed in the same hole:

 pi,j _ pk,j

First, write down a CNF for the pigeonhole problem for n “ 3. Then, apply the DPLL algorithm with
clause learning to the formula. You should write down the steps of your evaluation in the following
form:

(a) Decide p

(b) Unit propagate q from clause C2

(c) Decide  r

(d) Unit propagate s from clause C1

(e) Conflicted clause C1

(f) Learn conflict clause  p_ r

(g) ...

You are free to generate conflict clauses using any of the methods described in the lecture notes, but
you may want to look at the next problem before choosing one.

8. Resolving conflict (5 points) Use the resolution rule to derive a proof that one of your conflict
clauses from question 7 is entailed by the original formula.

(res)
Γ $ P,∆ Γ $  P,∆

Γ $ ∆

As the formula is quite long, you may use the symbol F to denote the formula in your premises, so if
your conflict clause is C, then you are to use the res rule to prove F $ C.

How many applications of res were necessary in your proof? Do you think that it is possible to find a
shorter one? Explain your answer.


