
Assignment 4: Arrays
15-414/15-424 Bug Catching: Automated Program Verification

Due: 11:59pm, Thursday 9/28/17
Total Points: 50

1. Spec a partition (5 points) Suppose you are given the following code, which partitions elements in
the range rl, us of an array a of length n on a given index p where 0 ď p ă n. That is, after the code
runs all elements between indices l and u, where l ď p ă u, that are at most appq are on the “left” of
a and all elements greater than appq are on the “right”.

v := a(p);

a(p) := a(u);

a(u) := v;

i := l - 1;

j := l;

while(j < u) {

if(a(j) <= v) {

i := i + 1;

t := a(i);

a(i) := a(j);

a(j) := t;

}

j := j + 1;

}

t := a(i+1);

a(i+1) := a(u);

a(u) := t;

Your first task is to formalize the correctness of this code according to the informal description above by
defining pre and post. Ultimately, you would like to define these so that the DL formula preÑ rαspost
is valid exactly when the code behaves as described above (where α is the above code). If you find
the given description ambiguous in any way, then be sure to explicitly state your interpretation of the
functionality and any resulting assumptions you made.

2. Find an invariant (5 points) Now that you have specified the behavior of the code from problem 1,
write a loop invariant that satisfies all of the conditions necessary to invoke the loop rule, leading to a
proof that preÑ rαspost is valid. You do not need to formally prove this, but you do need to give a
brief informal explanation as to why your invariant is correct.

3. Sum and max (10 points) Let α correspond to the following program:

while(i < n) {

if(m < a(i)) {

m := a(i);

}

s := s + a(i);

i := i + 1;

}

Use the axioms of dynamic logic to conduct a sequent calculus proof that the following formula is valid:

s “ 0,m “ 0, i “ 0 $ p@j.0 ď j ă nÑ apjq ě 0q Ñ rαss ď n ¨m

Be sure to clearly state your loop invariant to help your graders understand your solution.



4. Spec an inversion (5 points) Suppose that an array a is an injection: distinct indices map to distinct
elements. Furthermore, we assume that a is defined on all indices i such that 0 ď i ă n, and that it
only maps to values in this range as well. We want to write a program that inverts a into a second
array b, so that if a for example starts out as (for n “ 4):

r3, 1, 0, 2s

Then after the code runs, b has the value:

r2, 1, 3, 0s

Your task is to write a specification for this program by giving pre and post. As in problem 1, ff you
find this description ambiguous, then explicitly state your interpretation of the functionality and any
resulting assumptions that you make.

5. Implement it (5 points) Now that you have specified the behavior from problem 4, write a program
to implement the functionality. Then, write a loop invariant that will allow you to prove its correctness
with respect to your spec. Hint: your program can and should be very short!

6. Prove your inversion (10 points) Using the axioms of dynamic logic, conduct a sequent calculus
proof that your implementation from problem 5 is correct.

7. Array terms (5 points) Using the read-over-write axioms, conduct a proof in the sequent calculus
of the following formula.

ati ÞÑ eupjq “ eÑ i “ j _ arjs “ e

8. Soundness of array updates (5 points) In lecture we discussed an axiom for reasoning about array
updates:

(r:“spq) rapeq :“ ẽsppaq Ø ppate ÞÑ ẽuq

Use the following semantics of array update to prove the validity of the formula above:

Japeq :“ ẽK “ tpω, νq : ω “ ν except νJaK “ ωpaqtωpaqrωJeK ÞÑ ωJẽKuu


