
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Computations & Computation Tree Logic

Matt Fredrikson Ruben Martins

Carnegie Mellon University
Lecture 17

1 Introduction

Linear temporal logic is a very important logic for model checking [Eme90, CGP99,
BKL08] but has the downside that its verification algorithms are rather complex. To get
a good sense of how model checking works, we, thus, consider the closely related but
different(!) Computation Tree Logic (CTL) instead. Both LTL and CTL are common in
model checking even if they have different advantages and downsides.

The main point about LTL is that its semantics fixes a trace and then talks about
temporal properties along that particular trace. CTL instead switches to a new trace
every time a temporal operator is used. CTL has the advantage of having a pretty
simple model checking algorithm.

2 Kripke Structures

Definition 1 (Kripke structure). A Kripke frame (W,y) consists of a set W with a transi-
tion relation y ⊆W ×W where sy t indicates that there is a direct transition from s to
t in the Kripke frame (W,y). The elements s ∈W are also called states. A Kripke struc-
tureK = (W,y, v) is a Kripke frame (W,y) with a mapping v : W → Σ→ {true, false}
assigning truth-values to all the propositional atoms in all states. Note that the states
W are composed by a set of propositional atoms Σ. Moreover, a Kripke structure has a
set of initial states I ⊆W .

Definition 2 (Computation structure). A Kripke structure K = (W,y, v) is called a
computation structure if W is a finite set of states and every element s ∈ W has at least
one direct successor t ∈W with sy t. A (computation) path in a computation structure
is an infinite sequence s0, s1, s2, s3, . . . of states si ∈W such that si y si+1 for all i.

http://www.cs.cmu.edu/~15414/index.html

L17.2 Computations & Computation Tree Logic

Figure 1: An example of a Kripke structure

The program semantics [[α]] which was defined as a relation of initial and final states
in Lecture 3 is an example of a Kripke structure. Another example of a Kripke structure
that represents a coffee and tea machine is shown in Figure 1.

The set of states W represented in Figure 1 are W = {s0, s1, s2, s3}. The propositional
atoms Σ that appear in those states are Σ = {coin,select,coffee,tea}. The initial state
I = {s0}. The mapping v is represented as follows:

s0 → coin→ true

s1 → select→ true

s2 → coffee→ true

s3 → tea→ true

Note that we only shown the propositional atoms that are assigned the truth value
true but the remaining atoms would be assigned truth value false. Finally, the transi-
tion relation y is defined as follows.

s0 y s1

s1 y s2

s1 y s3

s2 y s0

s3 y s0

Computations & Computation Tree Logic L17.3

3 Computation Tree Logic

Definition 3. In a fixed computation structureK = (W,y, v), the truth of CTL formulas
in state s is defined inductively as follows:

1. s |= p iff v(s)(p) = true for atomic propositions p

2. s |= ¬P iff s 6|= P , i.e. it is not the case that s |= P

3. s |= P ∧Q iff s |= P and s |= Q

4. s |= AXP iff all successors t with sy t satisfy t |= P

5. s |= EXP iff at least one successor t with sy t satisfies t |= P

6. s |= AGP iff all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P for all i ≥ 0

7. s |= AFP iff all paths s0, s1, s2, . . . starting in s0 = s satisfy si |= P for some i ≥ 0

8. s |= EGP iff some path s0, s1, s2, . . . starting in s0 = s satisfies si |= P for all i ≥ 0

9. s |= EFP iff some path s0, s1, s2, . . . starting in s0 = s satisfies si |= P for some
i ≥ 0

10. s |= AUPQ iff all paths s0, s1, s2, . . . starting in s0 = s have some i ≥ 0 such that
si |= Q and sj |= P for all 0 ≤ j < i

11. s |= EUPQ iff some path s0, s1, s2, . . . starting in s0 = s has some i ≥ 0 such that
si |= Q and sj |= P for all 0 ≤ j < i

4 Definables

Some of the CTL formulas are redundant in the sense that they are definable with other
CTL formulas already. But the meaning of the original formulas is usually much easier
to understand than the meaning of its equivalent.

Lemma 4. The following are valid CTL equivalences:

1. EFP ↔ EUtrueP

2. AFP ↔ AUtrueP

3. EGP ↔ ¬AF¬P

4. AGP ↔ ¬EF¬P

5. AXP ↔ ¬EX¬P

6. AUPQ↔ ¬EU¬Q(¬P ∧ ¬Q) ∧ ¬EG¬Q

L17.4 Computations & Computation Tree Logic

Figure 2: Visualization of a LTL formula: PUQ

Most of these cases except the last are quite easy to prove.
So as not to confuse ourselves, we will definitely make use of the finally and globally

operators in applications. But thanks to these equivalences, when developing reasoning
techniques we can simply pretend next and until would be the only temporal operators
to worry about. In fact, we can even pretend only the existential path quantifier E is
used, never the universal path quantifier A, but this reduction in the number of differ-
ent operators comes at quite some expense in the size and complexity in the resulting
formulas.

5 Comparison between LTL and CTL

We mentioned before that LTL universally quantifies over paths. However, it is also
possible to have existential path quantification. As we have seen in the previous sec-
tions, in CTL we can have either existential or universal quantification:

• EP is a state formula where for a given Kripke structureK we have the following:

K, s |= EP ↔ there exists a path π starting at s where K, s |= P

• AP is a state formula where for a given Kripke structureK we have the following:

K, s |= AP ↔ for all paths π starting at s where K, s |= P

While LTL formulas describe linear-time properties (single paths), CTL formulas de-
scribe branching-time properties and can describe multiple possible futures. We can
visualize LTL formulas as a sequence of states in a single line where CTL corresponds
to a transition of states in a tree.

Figure 2 shows the visualization of the LTL formula PUQ, whereas Figure 3 shows
the visualization of the CTL formula AUPQ and Figure 4 the visualization of AEPQ.

LTL and CTL are incomparable in terms of expressiveness. There are formulas in
both logics that cannot be expressed in the other. Consider the CTL formula AFAGP .
One may think that FGP would be the equivalent LTL formula. Consider the language
of the automaton presented in Figure 5. The language of this automaton satisfies FGP
but does not satisfy AF(AGP). Note that we can visualize the CTL formula in Figure 6
where we can see that there is a run in which the system will always be in the state from
which a run finally goes in a non P state.

An example of a CTL formula that cannot be expressed in LTL is AG(EFP). This
formula states that there is always the possibility that a state can be reached during a

Computations & Computation Tree Logic L17.5

Figure 3: Visualization of a CTL formula: AUPQ

Figure 4: Visualization of a CTL formula: AEPQ

L17.6 Computations & Computation Tree Logic

Figure 5: An example of an automaton that satisfies FGP

Figure 6: Visualization of a CTL formula: AF(AGP)

run, even if it is never actually reached. However, the natural corresponding LTL for-
mula GFP states that at all times, P will eventually be reached. Note that this formula
is stronger than the previous one since we just need the possibility of returning to P .

6 Example: Mutual Exclusion

Temporal logic is particularly helpful to verify properties of distributed systems. For
example, we may want to reason about safety or liveness. Safety properties state that
“nothing bad would ever happen”, whereas liveness properties state that “something
good always happens”. We will how we can encode safety and liveness using CTL for
a mutual exclusion protocol.

The notation in the following transition diagram is nt for: the first process is in the
noncritical section while the second process is trying to get into its critical section.

n noncritical section of an abstract process
t trying to enter critical section of an abstract process
c critical section of an abstract process

Those atomic propositional letters are used with suffix 1 to indicate that they apply to
process 1 and with suffix 2 to indicate process 2. For example the notation nt indicates
a state in which n1 ∧ t2 is true (and no other propositional letters). Consider Kripke
structure

Computations & Computation Tree Logic L17.7

nn
0

tn

1

cn2

ct

4

tt

3

nt

5

tt

6

tc

8

nc

7

1. Safety: ¬EF(c1 ∧ c2) is trivially true since there is no state labelled ccx.

2. Liveness: AG(t1 → AFc1) ∧AG(t2 → AFc2)

References

[BKL08] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of
Model Checking. MIT Press, 2008.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, 1999.

[Eme90] Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pages 995–1072. MIT Press, 1990.

	Introduction
	Kripke Structures
	Computation Tree Logic
	Definables
	Comparison between LTL and CTL
	Example: Mutual Exclusion

