
15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Programs with Arrays

Matt Fredrikson Ruben Martins

Carnegie Mellon University
Lecture 6

1 Introduction

The previous lecture focused on loops, starting with axioms and leading to a derived
rule that allows us to simplify reasoning about loops to reasoning about the behavior
of a single iteration of their bodies. We worked an example involving a program that
uses loops to compute the square of a number, and found that much of the difficulty in
reasoning about loops lies in finding a suitable invariant.

Loops are frequently used to compute over a sort of programming element that we
haven’t introduced yet, namely arrays. Arrays are an important data structure in im-
perative programming, enabling us to implement things that we couldn’t otherwise.
However, they introduce significant complexity into programs’ behavior, so sound rea-
soning about their use is crucial. Today we will introduce arrays into our language,
and use our semantics to argue the correctness of the binary search code we discussed
in the first lecture. Along the way, we will build more experience in finding suitable
loop invariants for increasingly complex code, and in all likelihood, learn to appreciate
the benefits of using an SMT solver to complete our proofs.

2 Recall: Loop Invariants

Last lecture we derived the loop rule using the dynamic logic sequent calculus. We
started from the unwind and unfold axioms,

([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P ) ∧ (¬Q→ P )

The issue with using these axioms to reason about a program is that they do not
make our work easier: in either case, they reduce reasoning about a while loop to a bit

http://www.cs.cmu.edu/~15414/index.html


L6.2 Programs with Arrays

of logic, and then more reasoning about exactly the same while loop. In principle, as
long as we knew how many times a loop would execute in advance, we could use these
axioms to unfold the loop body until the condition implies termination. But we will not
in general know this information, so we needed different ways of reasoning about loop
behavior.

This led to our derivation of the loop rule, which relies on an invariant J .

(loop)
Γ ` J,∆ J,Q ` [α]J J,¬Q ` P

Γ ` [while(Q)α]P,∆

This rule requires us to prove three things in order to show that P holds after the loop
executes.

1. Γ ` J,∆: The loop invariant J is true when the loop begins its execution.

2. J,Q ` [α]J : Assuming that both the loop invariant J and the guard Q are true,
then executing the body of the loop α one time results in the loop invariant re-
maining true afterwards.

3. J,¬Q ` P : Assuming that both the loop invariant J and the negation of the guard
¬Q are true, the postcondition P must also be true.

Certainly, this is an improvement over reasoning from the axioms, becuase we are able
to deduce correctness by considering the behavior of just a single execution of the loop
body. However, it leaves open the question of how we should go about finding a suit-
able loop invariant, and this can be nontrivial. Today we’ll take a closer look at this
question, using a familiar program as an example.

3 Back to Binary Search

Let’s go back to an example that we briefly touched on in the first lecture. Recall that
we looked at a buggy version of binary search, shown below.

int binarySearch(int key, int[] a, int n) {

int low = 0;

int high = n;

while (low < high) {

int mid = (low + high) / 2;

if(a[mid] == key) return mid; // key found

else if(a[mid] < key) {

low = mid + 1;

} else {

high = mid;

}



Programs with Arrays L6.3

}

return -1; // key not found.

}

However, the bug in this case was a bit subtle. If we as the programmer assume that
variables assigned type int take values from Z, then there is no bug. Actual computers,
being nothing more than glorified finite-state machines, of course do not use integers
from Z but rather machine integers of a fixed size. So when the computer executes low
+ high on line 6 in the process of determining the midpoint, the resulting sum may be
too large to fit into a machine integer and thus overflow, ultimately causing a negative
number to be stored in mid.

The simple imperative language that we have studied since does not use machine
integers, and we’ve instead given ourselves the liberty of assuming that all values are
integers from Z. This means that if we translate the code from earlier into our language,
then we should be able to rigorously prove its correctness using the axioms of Dynamic
Logic. However, before we can do so, we will of course need to extend our language to
handle arrays.

Basic Arrays: Syntax. Most of us are probably familiar with the square bracket no-
tation for expressing arrays, e.g., x[i] to refer to the ith element of the array variable
x. Because we are already making heavy use of square brackets in dynamic logic for-
mulas, we will instead opt to use parenthesis for array syntax. We must first add a new
term a(e) to the syntax, which corresponds to referencing an array a at the index given
by e. Note that for now we allow arbitrary terms to specify the index, so the following
are acceptable terms in the new syntax: a(0), a(1 + x), a(a(x) · 3).

However, we do need to be careful about distinguishing between variable symbols
and array symbols. We don’t want to allow certain sets of terms into the language, like
a + a and a ≤ a. To do this, we need to assume that all variable symbols are already
defined as either corresponding to arrays or variables.

term syntax e, ẽ ::= x (where x is a variable symbol)
| c (where c is a constant literal)
| a(e) (where a is an array symbol)
| e+ ẽ
| e · ẽ

Note that this definition also prohibits terms like a(1)(2). In a language like C, when
looking at this term we might expect that a is an array of arrays, so a(1)(2) obtains
the second array stored in a, and then looks up its third value. As we will see when
we define the semantics, our language does not have arrays of arrays, so we shouldn’t
allow terms like this into our language. The above syntax definition accomplishes this.

Recall that our syntax for programs specified assignments as taking the form x := e.
This means that in order for programs to update arrays, we must also update program



L6.4 Programs with Arrays

syntax with a new alternative for array update. The term a(e) := ẽ does exactly this.

program syntax α, β ::= x := e (where x is a variable symbol)
| a(e) := ẽ (where a is an array symbol)
| ?Q
| if(Q)α elseβ
| α;β
| while(Q)α

Now that there are arrays in our language, we can write the binary search program in it.
We don’t have procedures and return statements in our language, but we can change
things a bit to make it work.

l := 0;h := n;
m := (l + h)/2;
while(l < h ∧ a(m) 6= k) {
if(a(m) < k)
l := m+ 1;

else

h := m;
m := (l + h)/2;
}
if(l < h) r := m else r := −1

Basic Arrays: Term Semantics. Now that we’ve defined array syntax, we need to
give them semantics so that we can reason about their use in programs. Intuitively,
we think of arrays as functions from the integers to the type of element stored in the
array. We can generalize this idea further by observing that multi-dimensional arrays
are nothing more than functions with arity greater than one, from the integers to the
element type. This way of modeling generalized array values even extends nicely to
constant values, because we can view them as functions of arity zero.

Making this more precise, we will update our semantics for terms and programs to
account for all values (i.e., both arrays and integers) as functions of the appropriate ar-
ity. We won’t worry about multi-dimensional arrays for now (this could return as an
exercise), so all of the values we work with will be functions of arity 0 (i.e., integer con-
stants) or 1 (i.e., arrays storing integers). To make this change, we start with redefining
the set of all states S. We had previously defined S as a function that assigns an integer
value in Z to every variable in V , the set of all variables. Now we will define S to be a
function that maps V to the set of functions over Z of arity at most 1:

S = (Z0 7→ Z) ∪ (Z1 7→ Z) = Z ∪ Z 7→ Z

Note that with this change, we can still view the semantics of terms ωJeK as a subset of
S, and that of programs JαK as a subset of S × S .



Programs with Arrays L6.5

We can now define the semantics of terms with arrays as we have done previously,
by inductively distinguishing the shape of a given term e against a state ω ∈ S. How-
ever, it might first be a good idea to consider how we would like arrays to be used in
the language. For instance, do we want to assign meaning to programs that contain
constructs like a1 +a2? Probably not, so we will need to be careful in how we define the
semantics to avoid such cases. Intuitively, we will do so by only assigning semantics
to terms involving arrays that evaluate to integer constants. While this will prohibit
some cases that we might see as useful, such as a1 := a2 (i.e., copy an entire array) and
a1 = a2 (i.e., compare all elements of two arrays), we can implement such functionality
in other ways.

Definition 1 (Semantics of terms with basic arrays). The semantics of a term e in a state
ω ∈ S is its value ωJeK, defined inductively as follows.

• ωJcK = c for number literals c

• ωJxK = ω(x)

• ωJa(e)K = ω(a)(ωJeK)

• ωJe+ ẽK = ωJeK + ωJẽK

• ωJe · ẽK = ωJeK · ωJẽK

The only change is the addition of the term a(e), which corresponds to array lookup.
The semantics defines this by looking up a in ω, evaluating e in ω, and then applying
the results.

4 Proving Binary Search

Now that we have semantics for terms that mention arrays, we should be able to rea-
son about the correctness of the binary search code from earlier. But what should the
specification be?

Specification. As for a precondition, there is one big assumption that this code must
make, namely that the array a is already sorted. There are several ways to specify
sortedness of arrays, and they all involve quantifiers. Perhaps the most obvious speci-
fication would simply state that for all valid positions in the array 0 ≤ i < n, every pair
a(i− 1) and a(i) are in order:

∀i.0 < i < n→ a(i− 1) ≤ a(i)

This specification is fine, but we should think about how we might want to use it later
on. In a sequent calculus proof, this precondition will eventually give us 0 < i < n →
a(i − 1) ≤ a(i) (for some i) in the antecedent. This will let us conclude things directly
about adjacent elements in the array, but if we want to reason about elements that are



L6.6 Programs with Arrays

arbitrarily far away, e.g., to prove that a(0) ≤ a(n − 1), then we will have to do a bit
more work as this fact is not immediate from the precondition. We would need to prove
a lemma:

` (∀i.0 < i < n→ a(i− 1) ≤ a(i))→ (∀i1, i2.0 ≤ i1 ≤ i2 < n→ a(i1) ≤ a(i2))

However, because we are free to place whatever we would like in the precondition
(within reason), we can simply use the formula on the right as our precondition for
sortedness.

sorted(a, n) ≡ ∀i1, i2.0 ≤ i1 ≤ i2 < n→ a(i1) ≤ a(i2)

Implicit in this is another precondition, namely that 0 < n. If we did not have this,
then someone could initialize n to be negative, which would cause sorted to evaluate
to true but result in meaningless program behavior. So, our precondition is:

pre(a, n) ≡ 0 < n ∧ sorted(a, n)

Now we need a postcondition. Looking at the program text, the variable r is used to
store the result on the last line. If l < h, which means that the loop ended early after
finding an element with value k, then r takes the position of the element. Otherwise, r
takes the value −1. This suggests a postcondition with two cases:

0 ≤ r → a(r) = k k found at position r
r < 0→ ∀i.0 ≤ i < n→ a(i) 6= k k not found

The antecedents are mutually exclusive, so we can simply conjoin these cases to arrive
at our postcondition:

post(a, r, k, n) ≡ (0 ≤ r → a(r) = k) ∧ (r < 0→ ∀i.0 ≤ i < n→ a(i) 6= k)

The dynamic logic formula that we would then like to prove is:

pre(a, n)→ [

l := 0;
h := n;
m := (l + h)/2;

 γ

while(l < h ∧ a(m) 6= k) {
if(a(m) < k)
l := m+ 1;

else

h := m;
m := (l + h)/2;

β

}
if(l < h) r := m else r := −1



α

] post(a, r, k, n)

Notice that we will use α as shorthand for the entire program, and β for the portion
within the loop, and γ for the first three assignments.



Programs with Arrays L6.7

Finding a loop invariant. Before we can begin proving this formula valid, we need
to think about a loop invariant. What should it be? It isn’t immediately clear from
inspection, so perhaps we can find a somewhat systematic way to nudge us in the right
direction. One approach that often works is to start writing the proof with a placeholder
for the loop invariant, so that we can see what is needed of the loop invariant to make
the proof work.

pre(a, n) ` [γ][while(l < h ∧ a(m) 6= k)β]P
[if]

pre(a, n) ` [γ][while(l < h ∧ a(m) 6= k)β][if(l < h) r := m else r := −1]post(a, r, k, n)
[;]
pre(a, n) ` [α]post(a, r, k, n)

→R ` pre(a, n)→ [α]post(a, r, k, n)

In the preceeding, we completed the proof up to the while statement. The condition P ,
which is too large to fit on the page with the surrounding formula, is:

P ≡ l < h→ [r := m]post(a, r, k, n)︸ ︷︷ ︸
PT

∧ l ≥ h→ [r := −1]post(a, r, k, n)︸ ︷︷ ︸
PF

However, we haven’t gotten to the loop yet, so we need to continue by applying the
loop rule.

pre(a, n) ` [γ]J J, l < h ∧ a(m) 6= k ` [β]J J,¬(l < h ∧ a(m) 6= k) ` P
loop

pre(a, n) ` [γ][while(l < h ∧ a(m) 6= k)β]P

Of the three things that we must prove, the last corresponding to the invariant implying
the postcondition will probably be the most helpful in learning more about a suitable
loop invariant. We’ll proceed with proving this obligation, and see what we can learn
from the attempt.

∧R

→R
1©

J,¬(l < h ∧ a(m) 6= k) ` PT
→R

2©
J,¬(l < h ∧ a(m) 6= k) ` PF

J,¬(l < h ∧ a(m) 6= k) ` PT ∧ PF

We’ll continue with the proof 1© of J,¬(l < h ∧ a(m) 6= k) ` PT first.

[:=]

¬L

∧R

id
∗

J, l < h ` l < h, post(a,m, k, n)
¬R

3©
J, l < h ` a(m) 6= k, post(a,m, k, n)

J, l < h ` l < h ∧ a(m) 6= k, post(a,m, k, n)

J,¬(l < h ∧ a(m) 6= k), l < h ` post(a,m, k, n)

J,¬(l < h ∧ a(m) 6= k), l < h ` [r := m]post(a, r, k, n)

And continuing with 3© from above, let Q ≡ J, l < h, a(m) = k:

∧R

→R

id
∗

Q, 0 ≤ m ` a(m) = k

Q ` 0 ≤ m→ a(m) = k
→R

¬L

...
Q ` 0 ≤ m,∀i.0 ≤ i < n→ a(i) 6= k

Q,m < 0 ` ∀i.0 ≤ i < n→ a(i) 6= k

Q ` m < 0→ ∀i.0 ≤ i < n→ a(i) 6= k

Q ` (0 ≤ m→ a(m) = k) ∧ (m < 0→ ∀i.0 ≤ i < n→ a(i) 6= k)



L6.8 Programs with Arrays

It doesn’t seem that we can go any further. From our loop invariant J , in addition to
l < h ∧ a(m) = k, we must prove that either 0 ≤ m or that none of the elements of a
from 0 to n − 1 match k. It shouldn’t take too much thought to realize which of these
goals will make a more reasonable addition to the loop invariant, because we expect
that m should stay within the bounds [0, n] throughout the execution of the loop.

In fact, a bit of thought says that we can strengthen this a bit if we’re careful, and
stronger invariants make for more direct proofs. In particular, it seems that most of the
time, 0 ≤ m < n (note, not just 0 ≤ m ≤ n). Scanning through the code, the only
situation that we might get into trouble with this invariant is if l = h = n. But we can
account for this by observing that as long as l < h, then 0 ≤ m < n. We’ll add this to
our invariant.

J ≡ l < h→ 0 ≤ m < n

Let’s finish the proof of 3©, from where we left off at the vertical dots. Let ∆ ≡ ∀i.0 ≤
i < n→ a(i) 6= k.

→L

id
∗

l < h, a(m) = k ` l < h, 0 ≤ m,∆
Z

∗
0 ≤ m < n, l < h, a(m) = k ` 0 ≤ m,∆

l < h→ 0 ≤ m < n, l < h, a(m) = k ` 0 ≤ m,∆

At this point, we have shown that the loop invariant J ≡ l < h → 0 ≤ m < n im-
plies the postcondition when the program takes the true branch on the final conditional
statement (e.g., l < h when the loop terminates). We still need to think about what
will happen when it takes the other branch, when l ≥ h. Let’s proceed with the proof,
corresponding to the subtree 2© from above.

[:=]

¬L

∧R

4©
J, l ≥ h ` l < h, post(a,−1, k, n)

5©
J, l ≥ h ` a(m) 6= k, post(a,−1, k, n)

J, l ≥ h ` l < h ∧ a(m) 6= k, post(a,−1, k, n)

J,¬(l < h ∧ a(m) 6= k), l ≥ h ` post(a,−1, k, n)

J,¬(l < h ∧ a(m) 6= k), l ≥ h ` [r := −1]post(a, r, k, n)

In subtree 4©, we will need to prove that the postcondition holds for r = −1 given J
and l ≥ h, because we cannot prove that l < h given these assumptions. In subtree 5©,
we must prove that either the postcondition holds at r = −1, or that a(m) 6= k. Let’s
start with 4©.

∧R

→R

¬L

Z
∗

J, l ≥ h ` − 1 < 0, l < h, a(−1) = k

J, l ≥ h, 0 ≤ −1 ` l < h, a(−1) = k

J, l ≥ h ` l < h, 0 ≤ −1→ a(−1) = k
→R

∀R

→R

...
J, l ≥ h, 0 ≤ i < n ` l < h, a(i) 6= k

J, l ≥ h ` l < h, 0 ≤ i < n→ a(i) 6= k

J, l ≥ h ` l < h, ∀i.0 ≤ i < n→ a(i) 6= k

J, l ≥ h ` l < h,−1 < 0→ ∀i.0 ≤ i < n→ a(i) 6= k

J, l ≥ h ` l < h, (0 ≤ −1→ a(−1) = k) ∧ (−1 < 0→ ∀i.0 ≤ i < n→ a(i) 6= k)

We can’t go any further at this point. Our invariant will need to give us enough to
prove that when l ≥ h and 0 ≤ i < n, then a(i) 6= k. With this in mind, we might



Programs with Arrays L6.9

Aside: Rules for quantifiers

Our proof of 4© used a rule that we have not seen before: ∀R. The rule allows us
to remove the quantifier, replacing the bound variable with a new variable that does
not appear anywhere else in the sequent. This is equivalent to saying that if we can
prove that F (y) holds on some y for which we make no prior assumptions, then we
can conclude that it holds universally. The corresponding left rule (∀L) says that if we
can prove something assuming F holds for a particular term, say e, then we can prove
it assuming that F holds universally. Intuitively, we’ve only made our assumptions
stronger by assuming that F holds universally.

(∀L)
Γ, F (e) ` ∆

Γ,∀x.F (x) ` ∆
(∀R)

Γ ` F (y),∆

Γ ` ∀x.F (x),∆
(y new)

The rules for existential quantifiers are similar, but in this case, it is the left rule in which
we need to be careful about renaming. Similarly to the ∀R, if we can use the fact that
F (y) holds to prove ∆, and nothing in our assumptions or ∆ mentions specific things
about y, then we can conclude that the details of y don’t matter for the conclusion, and
the only important fact is that some value establishing F (y) exists. The ∃R simply says
that if we can prove that F holds for term e, then we can conclude that it must hold for
some value, even if we leave the value unspecified.

(∃L)
Γ, F (y) ` ∆

Γ,∃x.F (x) ` ∆
(y new) (∃R)

Γ ` F (e),∆

Γ ` ∃x.F (x),∆

go back to our binary search code and think about how the main loop body works. It
begins with pointers to the beginning and end of the array, and works its way inwards.
At each iteration of the loop, it checks the midpoint of these pointers, and moves one
of the pointers to the current midpoint (or its immediate successor) depending on the
outcome of the test a(m) < k. After each move, we know that because the array is
sorted, none of the positions outside the pointers will contain a match for k.

Taking stock of this, our loop invariant might state that for all 0 ≤ i < n, whenever
a(i) = k then it is the case that l ≤ i < h. We can formalize this, and add it to our
invariant.

mbound ≡ l < h→ 0 ≤ m < n
notfound ≡ ∀i.0 ≤ i < n→ a(i) = k → l ≤ i < h
J ≡ mbound ∧ notfound



L6.10 Programs with Arrays

Now let’s see if we can finish off the proof of 4©.

∀L

→L

6© →L

7© ¬R

Z

¬L

id
∗

mbound, l ≥ h, 0 ≤ i < n ` l ≥ h, a(i) 6= k

mbound, l < h, l ≥ h, 0 ≤ i < n ` a(i) 6= k

mbound, l ≤ i < h, l ≥ h, 0 ≤ i < n ` a(i) 6= k

mbound, l ≤ i < h, l ≥ h, 0 ≤ i < n ` l < h, a(i) 6= k

mbound, a(i) = k → l ≤ i < h, l ≥ h, 0 ≤ i < n ` l < h, a(i) 6= k

mbound, 0 ≤ i < n→ a(i) = k → l ≤ i < h, l ≥ h, 0 ≤ i < n ` l < h, a(i) 6= k

mbound, notfound, l ≥ h, 0 ≤ i < n ` l < h, a(i) 6= k

The proof of 6© is direct from id:

id
∗

mbound, l ≥ h, 0 ≤ i < n ` 0 ≤ i < n, l < h, a(i) 6= k

The proof of 7© is nearly as straightforward:

¬R

id
∗

mbound, l ≥ h, 0 ≤ i < n, a(i) 6= k ` a(i) = k, l < h, a(i) 6= k

mbound, l ≥ h, 0 ≤ i < n ` a(i) = k, l < h, a(i) 6= k

So we have now shown that the loop invariant mbound∧ notfound implies the postcon-
dition in the case where the loop terminated because ¬(l < h). We still have to show
the case where the loop terminated because a(m) = k, which corresponds to subtree 5

from above.

∧R

8© →R

∀R

→R

∀L

→L

9© →L

a© Z

¬L

id
∗

mbound, l ≥ h, 0 ≤ i < n ` l ≥ h, a(m) 6= k, a(i) 6= k

mbound, l < h, l ≥ h, 0 ≤ i < n ` a(m) 6= k, a(i) 6= k

mbound, l ≤ i < h, l ≥ h, 0 ≤ i < n ` a(m) 6= k, a(i) 6= k

mbound, a(i) = k → l ≤ i < h, l ≥ h, 0 ≤ i < n ` a(m) 6= k, a(i) 6= k

mbound, 0 ≤ i < n→ a(i) = k → l ≤ i < h, l ≥ h, 0 ≤ i < n ` a(m) 6= k, a(i) 6= k

mbound, notfound, l ≥ h, 0 ≤ i < n ` a(m) 6= k, a(i) 6= k

J, l ≥ h ` a(m) 6= k, 0 ≤ i < n→ a(i) 6= k

J, l ≥ h ` a(m) 6= k, ∀i.0 ≤ i < n→ a(i) 6= k

J, l ≥ h ` a(m) 6= k,−1 < 0→ ∀i.0 ≤ i < n→ a(i) 6= k

J, l ≥ h ` a(m) 6= k, (0 ≤ −1→ a(−1) = k) ∧ (−1 < 0→ ∀i.0 ≤ i < n→ a(i) 6= k)

The proof of 8© is identical to the corresponding case in our proof of 4© above, so we
won’t list it here. The proof of 9© is identical to that of 6© above. Likewise, the proof of
a© is idntical to that of 7©, so we’ll omit it here. Finally, to finish off this proof, we used

identical reasoning as in the proof of 4©. We ended up with conflicting facts about the
natural numbers in our assumptions (i.e., 0 ≤ i < h and l ≥ h), so applying ¬L closed
the proof.

We conclude that this loop invariant is strong enough to give us the desired postcon-
dition, but we still need to prove two things:



Programs with Arrays L6.11

1. pre(a, n) ` [γ]J . That the loop invariant holds when we begin executing the loop.

2. J, l < h ∧ a(m) 6= k ` [β]J . That each iteration of the loop preserves the invariant.

A quick glance at the first three statements should give us some confidence that the (1)
will hold, so we’ll hold off on the formal proof until the end. However, (2) is a bit more
involved, and may even require strengthening the invariant more.

[:=]

[if]
b© c©

J, l < h ∧ a(m) 6= k ` [if(a(m) < k) l := m+ 1 elseh := m]J(a, l, h, (l + h)/2, n)

J, l < h ∧ a(m) 6= k ` [β]J(a, l, h,m, n)

We’ll attempt to prove each branch now, corresponding to b© and c©. To aid in vari-
able substitutions, we’ll use the following placeholders with variables for mbound and
notfound:

mbound(l, h,m, n)

notfound(a, n, k, l, h)

The beginning of the proof for b© is:

[:=]

→R

∧R
d© e©

J, l < h ∧ a(m) 6= k, a(m) < k ` mbound(m+ 1, h, (l + h)/2, n) ∧ notfound(a, n, k,m+ 1, h)

J, l < h ∧ a(m) 6= k ` a(m) < k → J(a,m+ 1, h, (l + h)/2, n)

J, l < h ∧ a(m) 6= k ` a(m) < k → [l := m+ 1]J(a, l, h, (l + h)/2, n)

It shouldn’t be surprising that we need to prove each conjunct in our invariant sepa-
rately. In fact, it is conventional to split loop invariants along conjuncts into a set of
loop invariants, as it facilitates readability. We’ll start with d©, which says that m re-
mains bounded between 0 and n (non-inclusive) as long as l < h.

∧L

→R

→L

f©
...

0 ≤ m < n, notfound, l < h, a(m) 6= k, a(m) < k,m+ 1 < h ` 0 ≤ (l + h)/2 < n

l < h→ 0 ≤ m < n, notfound, l < h, a(m) 6= k, a(m) < k,m+ 1 < h ` 0 ≤ (l + h)/2 < n

J, l < h, a(m) 6= k, a(m) < k ` m+ 1 < h→ 0 ≤ (l + h)/2 < n

J, l < h ∧ a(m) 6= k, a(m) < k ` m+ 1 < h→ 0 ≤ (l + h)/2 < n

Subtree f© follows immediately from the fact that l < h is in our assumptions. We
can’t complete the proof without the assumption that h ≤ n, which we have implicitly
assumed by adding l < h → 0 ≤ m < n to our invariant. We’ll add the fact to our
invariant, giving us

J ≡ mbound ∧ notfound ∧ h ≤ n

Although the addition of this fact won’t invalidate our earlier proofs that the invariant
implies the postcondition, we will need to prove that it is preserved by the loop, and



L6.12 Programs with Arrays

holds when the loop is first entered. We’ll get back to these obligations later, but for
now let’s return to the proof of b©, picking up where we left off at the vertical dots with
this new fact in hand. The rest of the proof follows from arithmetic, because l < h ≤ n,
so (l + h)/2 < n.

Z
∗

h ≤ n, 0 ≤ m < n, notfound, l < h, a(m) 6= k, a(m) < k,m+ 1 < h ` 0 ≤ (l + h)/2 < n

Now we need to prove e©, which is preservation of notfound(a, n, k,m+1, h). To reduce
clutter, we’ll remove the assumption a(m) 6= k, as it implied by a(m) < k.

∧L

∀R

→R

→R

→L

g© ∧R
h© i©

0 ≤ m < n, notfound, h ≤ n, l < h, a(m) < k, 0 ≤ i < n, a(i) = k ` m+ 1 ≤ i < h

l < h→ 0 ≤ m < n, notfound, h ≤ n, l < h, a(m) < k, 0 ≤ i < n, a(i) = k ` m+ 1 ≤ i < h

J, l < h, a(m) < k, 0 ≤ i < n ` a(i) = k → m+ 1 ≤ i < h

J, l < h, a(m) < k ` 0 ≤ i < n→ a(i) = k → m+ 1 ≤ i < h

J, l < h, a(m) < k ` ∀i.0 ≤ i < n→ a(i) = k → m+ 1 ≤ i < h

J, l < h ∧ a(m) 6= k, a(m) < k ` ∀i.0 ≤ i < n→ a(i) = k → m+ 1 ≤ i < h

Subtree g© follows immediately from the fact that l < h is already in our assumptions.
The last step splits m + 1 ≤ i < h into m + 1 ≤ i ∧ i < h, and applies ∧R. However,
we can’t proceed further, even though our intuition suggests that we should be able to.
What’s going on? We need to prove that m + 1 ≤ i < h, and we know that a(m) < k
and that a(i) = k. We know that this implies that m + 1 ≤ i, but why? Because a is
sorted! But we cannot use that fact at the moment, because it isn’t in our loop invariant.
In retrospect, it should have been obvious that we would need to use this fact in our
invariant, because we required it in the precondition. Adding it gives us the following:

J ≡ mbound ∧ notfound ∧ h ≤ n ∧ sorted

Let’s finish the proof of h©, but first we might think about de-cluttering our assump-
tions to make the reasoning more clear. From our informal discussion in the previous
paragraph, we only seem to need the fact that the loop is sorted, the two comparisons
involving a(m) and a(i), and facts about the bounds of m. Let’s try to finish the proof
with just these.

Z

∀L

¬L

¬R

→L

j© =L

id
∗

a(i) ≤ a(m), 0 ≤ m < n, 0 ≤ i < n, a(i) = k,m ≥ i ` a(m) ≥ a(i)

a(i) ≤ a(m), 0 ≤ m < n, 0 ≤ i < n, a(i) = k,m ≥ i ` a(m) ≥ k
0 ≤ i ≤ m < n→ a(i) ≤ a(m), 0 ≤ m < n, 0 ≤ i < n, a(i) = k,m ≥ i ` a(m) ≥ k
0 ≤ i ≤ m < n→ a(i) ≤ a(m), 0 ≤ m < n, 0 ≤ i < n, a(i) = k ` a(m) ≥ k,m < i

0 ≤ i ≤ m < n→ a(i) ≤ a(m), 0 ≤ m < n, 0 ≤ i < n, a(m) < k, a(i) = k ` m < i

∀i1, i2.0 ≤ i1 ≤ i2 < n→ a(i1) ≤ a(i2), 0 ≤ m < n, 0 ≤ i < n, a(m) < k, a(i) = k ` m < i

∀i1, i2.0 ≤ i1 ≤ i2 < n→ a(i1) ≤ a(i2), 0 ≤ m < n, 0 ≤ i < n, a(m) < k, a(i) = k ` m+ 1 ≤ i



Programs with Arrays L6.13

Subtree j© follows directly from the assumptions available in our context. We must
now prove the other side of the inequality, i < h, corresponding to subtree i©.

∀L

→L

k© →L

l© Z
∗

0 ≤ i < n, l ≤ i < h, h ≤ n, l < h, a(i) = k ` i < h

0 ≤ i < n, a(i) = k → l ≤ i < h, h ≤ n, l < h, a(i) = k ` i < h

0 ≤ i < n, 0 ≤ i < n→ a(i) = k → l ≤ i < h, h ≤ n, l < h, a(i) = k ` i < h

0 ≤ m < n,∀i.0 ≤ i < n→ a(i) = k → l ≤ i < h, h ≤ n, l < h, a(m) 6= k ` i < h

Subtrees k© and l© follow immediately from the assumptions in our context. We’ve
now closed out subtree d©, which means that we’ve proved preservation of mbound.

We still need to prove preservation of the mbound and notfound on the other branch of
the conditional (subtree c©), in addition to the parts of the loop invariant that we added
while proving mbound: h ≤ n and sorted. Let’s first look at the preservation proof
for sorted. The only free variables in this portion of the invariant are a and n, neither
of which are updated by the code. Intuitively, this suggests that the proof should be
trivial, which we see from the proof.

[:=]

id
∗

sorted, mbound, notfound, h ≤ n, l < h, a(m) 6= k ` sorted

sorted, mbound, notfound, h ≤ n, l < h, a(m) 6= k ` [l := m+ 1]sorted

Similarly for h ≤ n, because h isn’t updated on this branch of the conditional, we get
preservation by assuming h ≤ n as part of the invariant.

Let’s continue for now with subtree e©.

[:=]

∧R
m© n© o© p©

J, l < h, a(m) > k ` mbound(l,m, (l +m)/2, n) ∧ notfound(a, n, k, l,m) ∧m ≤ n ∧ sorted
J, l < h, a(m) > k ` [h := m]J(a, l,m, (l + h)/2, n)

As in the previous branch, because a and n aren’t updated, the proof of p© will be
similarly trivial. The proof of o©, which is preservation of h ≤ n, is not as trivial this
time. Because h was updated to m, we need to show that:

l < h→ 0 ≤ m < n,∀i.0 ≤ i < n→ a(i) = k → l ≤ i < h,
h ≤ n, ∀i1, i2.0 ≤ i1 ≤ i2 < n→ a(i1) ≤ a(i2),
l < h, a(m) > k

` m ≤ n

This follows from applying→L on l < h→ 0 ≤ m < n, and the fact that l < h is one of
the premises. However, it should be clear that manually proving all of the obligations
is a very laborious undertaking! Once the correct loop invariant has been identified,
then the rest of the work is difficult only insofar as it requires a lot of work. This is
exactly why we use SMT solvers to prove straightforward formulas like the one we just
discussed, and verification condition generators to apply the axioms of dynamic logic
to eliminate box and diamond terms.

The remaining obligations m© and n© are left as an exercise, as is the proof that the
first three statements in γ establish the invariant, pre(a, n) ` [γ]J .


	Introduction
	Recall: Loop Invariants
	Back to Binary Search
	Proving Binary Search

