Mini-Project 1
Hybrid Data Structures

15-414: Bug Catching: Automated Program Verification

Due Friday, October 3, 2025 (checkpoint)
Friday, October 10, 2025 (final)

You should pick one of the following three alternative mini-projects. You may, but are not
required to, do this assignment with a partner.

WhyML implementations of the data structures below that have been verified in Why3
may exist online. While you can examine Why3 reference materials, tutorials, and
examples, you may not read or use Why3 implementations of the data structures we
ask you to code. However, you may study or use implementations in other languages
(with appropriate citations), and you can freely use anything in the Why3 standard
library. In addition, the Toccata gallery of verified Why3 program may provide some
insight.

The mini-projects have two due dates:

¢ Checkpoint at 23:59pm, Fri Oct 3, 2025 (50 pts)

¢ Final projects at 23:59pm, Fri Oct 10 2025 (100 pts)
newline Up to 20 pts you lost on the checkpoint may be recovered on your final submission
if you fix the problems that were noted. You are strongly encouraged to look at our feedback
even if you received a full score.

Midsemester grades are shortly after this project is due, and we aim to have feedback for you to
gauge your performance in the course by that time. As a result, no late days may be used either
on the checkpoint nor on the final portion of the project.

The mini-projects must be submitted electronically on Gradescope. Please carefully read the
policies on collaboration and credit on the course web pages at http://www.cs.cmu.edu/~15414/
assignments.html.

If you are working with a partner, only one of the two of you needs to submit to each Grade-
scope assignment. Once you have uploaded a submission, you should select the option to add
group members on the bottom of the screen, and add your partner to your submission. Your
partner should then make sure that they, too, can see the submission.

Our main piece of advice is this: Elegance is not optional! For writing verified code,
this applies to both: the specification and the implementation.

MINI-PROJECT 1 DUE FRIDAY, OCTOBER 3, 2025 (CHECKPOINT)
FRIDAY, OCTOBER 10, 2025 (FINAL)


http://toccata.lri.fr/gallery/why3.en.html
http://www.cs.cmu.edu/~15414/assignments.html
http://www.cs.cmu.edu/~15414/assignments.html

Hybrid Data Structures HW1.2

The Code

In each problem, we provide some suggested module outlines, but your submitted modules may
be different. For example, where we say ‘let’ it may actually be “let rec’, or ‘function’, or
‘predicate’, etc. You may also modify the order of the functions or provide auxiliary types and
functions. You may also change the type definitions or types of the function, but in this case you
should justify the change in your writeup.

The Writeup
The writeup should consist of the following sections:

1. Executive Summary. Which problem did you solve? Did you manage to write and verify all
functions? If not, where did the code or verification fall short? Which were the key decisions
you had to make? What ended up being the most difficult and the easiest parts? What did
you find were the best provers for your problem? What did you learn from the effort?

2. Code Walk. Explain the relevant or nontrivial parts of the specification or code. Point out
issues or alternatives, taken or abandoned. Quoting some code is helpful, but avoid “core
dumps.” Basically, put yourself into the shoes of a professor or TA wanting to understand
your submission (and, incidentally, grade it).

3. Recommendations. What would you change in the assignment if we were going to reuse it
again next year?

Depending on how much code is quoted, we expect the writeup to consist of about 3-5 pages in
the lecture notes style.

What To Hand In
You should hand in the following files on Gradescope:

* Submit the file mp1.zip to MP1 Checkpoint (Code) for the checkpoint and to MP1 Final
(Code) for the final handin. As we are not providing starter files for the project, please make
sure you submit both the code and completed session folder in the zip. Feel free to adjust
our past Makefiles for your purposes, but you are not required to create one.

® Submit a PDF containing your final writeup to MP 1 Final (Written). There is no checkpoint
for the written portion of the assingment. You may use the file mp1-sol.tex as a template
and submit mp1-sol.pdf.

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the writeup to be typeset in LaTeX, but as long as you hand in a readable PDF with
your solutions it is not a requirement. We package the assignment source mp1.tex and a solution
template mp1i-sol.tex in the handout to get you started on this.

MINI-PROJECT 1 DUE FRIDAY, OCTOBER 3, 2025 (CHECKPOINT)
FRIDAY, OCTOBER 10, 2025 (FINAL)



Hybrid Data Structures HW1.3

General Advice, Accumulated from previous years

Keep your code simple and your contracts at a high level.
Introduce predicates and logical functions so contracts remain concise and clearly organized.

If things get too complicated, reconsider the approach you have been taking. It may save
time in the end to start fresh, using the lessons you have learned so far, rather than continu-
ing to prove an unnecessarily complicated implementation.

Do not worry about performance optimizations. Your grade is based on the correctness of
your code and specifications, not how efficient it would be to use.

Organize your approach in stages and get each stage to work end-to-end before moving on
to the next stage. Save each working stage, either to submit or to backtrack to. Each MP1
final submission problem has natural stages, either explicitly stated (as in 2.2 Hash Sets) or
implicit. A fully working partial solution is easier and more pleasant to grade than a messy
nonworking attempt.

There are also additional hints below, with each of the options.

MINI-PROJECT 1 DUE FRIDAY, OCTOBER 3, 2025 (CHECKPOINT)

FRIDAY, OCTOBER 10, 2025 (FINAL)



Hybrid Data Structures HW1.4

1 Tries

A trie is an efficient data structure to represent sets or maps. You can read about tries, for example,
in the Wikipedia article on Tries. In brief, the word which we use to look up data is presented in
the form of a list of characters. At the root of the trie the first character in the word is an index
by which we select a subtrie, from which we then proceed recursively with the remainder of the
word. When the word is empty, we have found the location of the associated data in the trie.

1.1 Checkpoint: Bitwise Tries

Bitwise tries are the special case where a character is a bit, and a word is a sequence of bits. Every
bitwise trie has at most two subtries. A bitwise trie can be used, for example, to represent a
set of natural numbers by associating a number with a binary value. Because any data can be
represented as a sequence of bits this is quite flexible.

Implement and verify sets of bit sequences as bitwise tries. You do not have to be concerned
with low-level efficiency issues regarding space or time, but inserting or deleting a bit sequence
of length m should have asymptotic complexity of O(m). You may use standard libraries as you
see fit.

Your implementation should define the types and functions below, and any auxiliary functions
or predicates you wish to define. Each computational function should have suitable pre- and post-
conditions to express their intended meaning.

Note: If you implement memas a pure function, you do not need to provide contracts for it.

I module BitTrie
type bitseq
4 type trie

6 let mem (x : bitseq) (t : trie) : bool
8 let empty () : trie

9 let insert (x : bitseq) (t : trie) : trie
10 let delete (x : bitseq) (s : trie) : trie

12 let union (s : trie) (t : trie) : trie

13 let intersection (s : trie) (t : trie) : trie
14 let difference (s : trie) (t : trie) : trie

15

16 end

1.2 Final: Sets of Words

Now imagine we want to store all the distinct words in the collected works of Shakespeare, or
the Scrabble dictionary, with efficient means to determine membership. The input to this process
should be a list of strings. The output should be a trie containing exactly the given strings.

Implement and verify tries of words (in the common meaning), restricted to letters ‘A’ through
‘Z’, if you wish. As usual, your functions should have suitable pre- and post-conditions.

For this problem, likely only mem, empty and insert will be relevant, but they should now be
on words consisting of letters rather than bit sequences. This means you should have a simple
auxiliary data structure at each node (for example, a list) containing all subtries.

MINI-PROJECT 1 DUE FRIDAY, OCTOBER 3, 2025 (CHECKPOINT)
FRIDAY, OCTOBER 10, 2025 (FINAL)


https://en.wikipedia.org/wiki/Trie

Hybrid Data Structures HW1.5

module WordTrie

1
3 type letter
4 type word
type trie

7 let mem (x : word) (t : trie) : bool

9 let empty () : trie
10 let insert (x : word) (t : trie) : trie

12 end

Hint: The key here is the right approach to the map from letters to tries at each non-empty node.
Choose the wrong approach and it quickly becomes very tricky; choose the right approach and it
is surprisingly elegant. As often in programming, and especially in verified programming, strive
for the most abstract approach you can think of, and avoid optimizations early on. If you find
yourself stuck in a situation that is becoming increasingly complex and difficult to manage, take a
step back and think of ways to abstract.

2 Hash Sets

Hash tables are a common efficient data structure to map keys to values. As your mini-project,
you may choose to implement and verify hash tables, where the values are just Booleans. The data
structure is inherently mutable, but must be copied when it is resized.

2.1 Checkpoint: Static Hash Set with Separate Chaining

In your implementation, the type of key and the hash function should remain abstract so a client
can suitably clone your module with a concrete type of key and concrete hash function. We suggest
testing this functionality by cloning your module with integers and a simple hash function on
integers. An example of such cloning is maps of integers in MapApplInt.

The hash table is represented as an array of buckets, which are (immutable) lists of keys. In
many applications, these would be key/value pairs, but for simplicity we store only keys. For the
checkpoint, the operations are to create an empty hash set with a initial size n (create n = h), to
add a key to a hash set (add h k), and to determine whether a key is in the set (mem h k = b). In
the implementation you should likely have corresponding operations on buckets.

The model of your data structure should be a finite set Fset. The postconditions should express
the effect of your operation on the model.

1 module HashSet
use int.Int

4 use list.List
use list.Mem

6 use set.Fset

7 use array.Array
8 (¥ any use of additional standard libraries here *)

10 (*¥ abstract, supplied by client *)

MINI-PROJECT 1 DUE FRIDAY, OCTOBER 3, 2025 (CHECKPOINT)
FRIDAY, OCTOBER 10, 2025 (FINAL)


http://why3.lri.fr/stdlib/fmap.html#MapAppInt_
http://why3.lri.fr/stdlib/set.html#Fset_

Hybrid Data Structures HW1.6

12 val eq (x : key) (y : key) : bool
13 ensures { result <-> x =y }

14 val function hash (x : key) : int
15 ensures { result >= 0 }

17 type bucket = list key

19 type hash_set = { mutable data : array bucket ;
20 ghost mutable model : fset key 1}

2 let create (n : int) : hash_set
23 let add (h : hash_set) (k : key) : unit
24 let find (h : hash_set) (k : key) : bool

26 end

2.2 Final: Hash Sets with Deletion and Resizing

We make three extension to the data structure from the checkpoint:

1. We add a remove operation
let remove (h : hash_set) (k : key) : unit

2. We add a mutable size field to hash sets counting the number of elements in the table,
maintained when adding or removing elements.

3. We add a resize function which should be automatically invoked when the number of
elements would exceed the length of the underlying array. The size of the new table should
be 2 x n + 1, where n is the size of the old table.

Resizing is by far the trickiest function to write and verify because most keys will end up in
different buckets. It is essential to define some logical predicates and functions to express the in-
variants concisely and intelligibly.

Hints:

* Use the model wherever you can, even for internal functions or in loop invariants (where
possible). For example, instead of counting the number of elements in the table for use in
your contracts, use Fset.cardinal on the model.

¢ Inloops, data structure invariants are not enforced, only at function boundaries. That means
you should be prepared to define a predicate explicitly stating the data structure invariants
and use it in loop invariants. In general, in imperative code (for example, the resize function)
you should keep an open mind about whether to use loops or recursion. A loop is less
modular in a way, but it allows more variables and information about the state to remain
visible and “in scope”.

MINI-PROJECT 1 DUE FRIDAY, OCTOBER 3, 2025 (CHECKPOINT)
FRIDAY, OCTOBER 10, 2025 (FINAL)



Hybrid Data Structures HW1.7

¢ In nested loops, it is likely you will need to include invariants of the outer loop in the inner
loop. Plan for this initially in situations where you will need nested loops, and refine the
invariants in tandem until you can prove preservation. The invariants on the outer loop is
what Why3 will ultimately use to reason about your postcondition.

¢ For a data structure h with a mutable field data containing an array, you can make an as-
signment such as h.data <- data’ only at the end of your function. Why3 will otherwise
complain because the assignment introduces a nontrivial alias between the two arrays and
changing one would affect the other. Since it does not track such aliasing it just disallows it
for the sake of soundness.

3 Treaps with Split and Join

Treaps are an elegant data structure for binary search trees that are balanced with high probability
and have a simple implementation. Moreover, they have a high degree of parallelism. The name
treap is a hybrid between a tree and a heap, which is exactly what this data structure represents.

First, a treap is a binary search tree and therefore satisfies the usual order invariant: each
nonempty node stores a key &, and all keys in the left subtree are strictly smaller than k£ and
those in the right subtree strictly larger than £. In addition, a treap maintains a randomly chosen
priority with each key. The treap then maintains the heap invariant regarding the priorities: the
priority of a parent is always greater than the priorities of the children. The operations maintain
these invariants.

All operations on treaps derive from the basic split and join. You can find a detailed description
and even a functional implementation in three brief chapters from the lectures notes from 15-210
Algorithms: Parallel and Sequential by Umut Acar and Guy Blelloch.

3.1 Checkpoint: Parametric Binary Search Trees

In this problem we assume that instead of key/value pairs we simply store keys. It is straightfor-
ward to extend this and does not add much insight either into programming or verification.
Assume you have a type of binary search trees and functions implementing split and join.

Specify their behavior and then implement and verify the remaining functions with respect to
them. Unless you give simple implementations of split and join, you won’t be able to run your
code at this stage.

I module ParametricBST

: type key = int

4 type tree = Leaf | Node tree key tree

6 val split (t : tree) (k : key) : (tree , bool , tree)
7 val join (tl1 : tree) (t2 : tree) : tree

9 let empty () : tree

10 let singleton (k : key) : tree

11 let delete (t : tree) (k : key) : tree

12 let insert (t : tree) (k : key) : tree

13 let intersection (tl : tree) (t2 : tree) : tree
14 let difference (tl : tree) (t2 : tree) : tree

MINI-PROJECT 1 DUE FRIDAY, OCTOBER 3, 2025 (CHECKPOINT)
FRIDAY, OCTOBER 10, 2025 (FINAL)


https://drive.google.com/file/d/1fMwEyiWV5Q0finu5rIlU29vNp3tVe71I/view

Hybrid Data Structures HW1.8

15 let union (t1 : tree) (t2 : tree) : tree
16

17 end

3.2 Final: Treaps

You should now implement the operations of split and join, keeping the remaining operations
the same or close to the functions at the checkpoint. Due to limitations of WhyML’s clone opera-
tion, you should expect to copy the code from the checkpoint.

In your implementation of split and join, you should extend the data structure implementation
by associating priorities with every key, say, by calling a hash function that provides a uniform
distribution of priorities. It may be beneficial to keep this hash function abstract.

1 module Treap

W N

g type key = int
4 type priority = int
5 type tree = Leaf | Node tree key tree

7 let split (t : tree) (k : key) : (tree , bool , tree)
8 let join (tl1 : tree) (t2 : tree) : tree

10 (¥ rest as before *)

12 end

Hint: In a slight deviation from the description of Data Structure 3.2 (p.21) in the 15-210 lecture
notes, we recommend computing the priority of each key k with a hash function p(k), as in Defi-
nition 3.1 (p.19). Depending on your choice, you may wish to add the priority p to each node and
change the type tree or keep it as shown above.

MINI-PROJECT 1 DUE FRIDAY, OCTOBER 3, 2025 (CHECKPOINT)
FRIDAY, OCTOBER 10, 2025 (FINAL)



	Tries
	Checkpoint: Bitwise Tries
	Final: Sets of Words

	Hash Sets
	Checkpoint: Static Hash Set with Separate Chaining
	Final: Hash Sets with Deletion and Resizing

	Treaps with Split and Join
	Checkpoint: Parametric Binary Search Trees
	Final: Treaps


