
Assignment 3
Dynamic Duo

15-414: Bug Catching: Automated Program Verification

Due 11:59pm, Friday, Sep 26, 2025
70 pts

This assignment is due on the above date and it must be submitted electronically on Grade-
scope. Please carefully read the policies on collaboration and credit on the course web pages at
http://www.cs.cmu.edu/~15414/assignments.html.

What To Hand In

You should hand in the following files on Gradescope:

• Submit the file asst3.zip to Assignment 3 (Code). You can generate this file by running
make handin. This will include your solution partition.mlw and the proof session in partition/.

• Submit a PDF containing your answers to the written questions to Assignment 3 (Written).
You may use the file asst3-sol.tex as a template and submit asst3-sol.pdf. You can
generate this file by running make sol (assuming you have pdflatex in your system).

Make sure your session directories and your PDF solution files are up to date before
you create the handin file.

Using LaTeX

We prefer the answer to your written questions to be typeset in LaTeX, but as long as you hand
in a readable PDF with your solutions it is not a requirement. We package the assignment source
asst3.tex and a solution template asst3-sol.tex in the handout to get you started on this.

ASSIGNMENT 3 DUE 11:59PM, FRIDAY, SEP 26, 2025
70 PTS

http://www.cs.cmu.edu/~15414/assignments.html

Dynamic Duo HW3.2

1 Lather, Rinse, Repeat (10 pts)

In this problem we continue to study a repeat-until loop as an alternative to a while loop in our DL
language. Informally, the repeatαP loop executes α and then tests P . If P is true it exits the loop,
and if P is false it repeats it.

Task 1 (5 pts). The most straightforward (but relatively difficult to use) axiom for while loops in
dynamic logic is [whileP α]Q ↔ (P → [α][whileP α]Q) ∧ (¬P → Q). Give a corresponding axiom
for the repeat loop.

Task 2 (5 pts). Express the repeat-until loop using the constructs of nondeterministic dynamic
logic where the conditional and while loop have been replaced by nondeterministic choice and
repetition.

2 Looking into the Past (25 pts)

In ordinary modal logic there is a ■P modality that expresses “P has always been true”. We can
extend dynamic logic with a corresponding operator LαMP read as “before α P”. Its semantics is
defined by

ω |= LαMP iff for all µ such that µJαKω we have µ |= P

For each of the following parts, develop axioms for nondeterministic dynamic logic that allow you
to break down proving LαMP into properties of smaller programs or eliminate them altogether. You
only need to prove one direction of one of these properties (see Task 6) but it may be helpful to
convince yourself your answers are correct.

Task 3 (5 pts). Lα ; βMP

Task 4 (5 pts). Lα ∪ βMP

Task 5 (5 pts). L?QMP

Task 6 (10 pts). Prove one direction of one of the axioms from Tasks 3–5. For this purpose assume
ω |= ONESIDE and prove that ω |= OTHERSIDE for an arbitrary ω. Since ω is arbitrary this means
that the implication is valid. The proof regarding sequential composition in Lecture 6, Section 5
provides a good model for the format and level of detail we expect.

3 The Day of Judgment (20 pts)

Task 7 (12 pts). For each of the following judgments in dynamic logic, find a program that, when
substituted for α, makes the judgment hold. Throughout these judgments, ω is an arbitrary state.

1. ω[x 7→ 0, y 7→ 42] |= [(?(x ̸= y);x← x+ 1;α)∗; (?(x = y))]⊥

2. ω[x 7→ 0, y 7→ 0] |= ([α](x = 42)) ∧ ([α;α](x = 42)) ∧ ([α;α;α](x ̸= 42))

3. ω[x 7→ 0, y 7→ 0] |= ¬[α](x ̸= y ∨ ⟨α⟩(x = y))

4. ω[x 7→ 0, y 7→ 0] |= (⟨α⟩(x = 42)) ∧ (¬[α](x = 42))

ASSIGNMENT 3 DUE 11:59PM, FRIDAY, SEP 26, 2025
70 PTS

http://www.cs.cmu.edu/~15414//lectures/06-dynamiclogic.pdf

Dynamic Duo HW3.3

Task 8 (8 pts). For each of the following judgments in dynamic logic, find a state that, when sub-
stituted for ω, makes the judgment hold. Here, skip ≜ ?true.

1. ω |= [(?(x ̸= y);x← x+ 1; y ← y − 1)∗; (?(x = y))](x ̸= y)

2. ω |= ¬[(x← x+ 1; y ← 2x)∗](x = y)

3. ω |= [if (x = 0) (y ← y ∗ 0) (skip)](x = 0→ y = 42)

4 Partition Party (15 pts)

This problem exercises the often tricky aspects of modifying a data structure in place—in this case
a simple array of integers.

Write and verify a function partition (a : array int) : int that permutes the elements
of the array a in place so that all negative numbers precede all nonnegative numbers. The value
returned is the index of the first nonnegative number in the resulting array, or a.length if the
numbers are all negative.

You can find a solution template in file partition.mlw.
Hint: the standard libraries array.ArrayPermut and array.ArraySwap may be helpful.

ASSIGNMENT 3 DUE 11:59PM, FRIDAY, SEP 26, 2025
70 PTS

	Lather, Rinse, Repeat (10 pts)
	Looking into the Past (25 pts)
	The Day of Judgment (20 pts)
	Partition Party (15 pts)

